

Anchoring

Product Description

ULTRABOND® HYB-2CC is a code compliant, two-component, 10:1 mix ratio by volume, high performance hybrid anchoring and post-installed reinforcing bar system. The system is suitable for use in cracked and uncracked concrete in accordance with ACI 355.4 and ICC-ES AC308. HYB-2CC offers an extended installation temperature range between 23 °F to 104 °F (-5 °C to 40 °C).

General Uses & Applications

- Anchoring threaded rod and reinforcing bar (rebar) into cracked or uncracked concrete
- Alternative to cast-in-place reinforcing bar connections per ACI 318 & IBC Chapter 19
- Suitable for dry, water saturated and water-filled conditions using threaded rod or rebar
- Vertical down, horizontal, upwardly inclined and overhead installations

Advantages & Features

- ICC-ES ESR-4535 evaluation report for cracked and uncracked concrete
- Building code compliant, IBC/IRC: 2018, 2015, 2012 & 2009
- Florida Building Code (FBC) Compliant: 2017
- City of Los Angeles (LABC/LARC) Code Compliant: 2017
- ICC-ES AC308 and ACI 355.4 assessed for resisting long term loading conditions (creep) up to 212 °F (100 °C) and short term loading up to 320 °F (160 °C)
- NSF Certified Drinking Water System Components to NSF/ ANSI 61
- Multiple Anchor Types: fractional and metric threaded rod & rebar (for both anchor systems and rebar development length applications)
- Qualified for Seismic Design Categories A through F
- · Designed for rapid strength concrete anchoring

STANDARDS & APPROVALS

CODE COMPLIANT:

ICC-ES ESR-4535
IBC/IRC 2018, 2015, 2012, & 2009
City of Los Angeles 2017
Florida Building Code 2017

ASTM C881-15/AASHTO M235 Type I, II, IV & V Grade 3 Class A, B & C

Drinking Water System Components NSF/ANSI 61

Availability: Adhesives Technology Corp. (ATC) products are available online and through select distributors providing all your construction needs. Please contact ATC for a distributor near you or visit www.atcepoxy.com to search for a distributor by zip code.

Color & Ratio: Part A (Resin) Light Beige: Part B (Hardener) Black, Mixed Ratio: 10:1 by volume, Mixed Color - Gray.

Storage & Shelf Life: 18 months when stored in unopened containers in dry and dark conditions. Store between 41 °F (5 °C) and 77 °F (25 °C).

Installation & Estimation: Manufacturer's Printed Installation Instructions (MPII) are available within this Technical Data Sheet (TDS). Due to occasional updates and revisions, always verify the most current MPII usage. In order to achieve maximum results, proper installation is imperative. An estimating guide for product usage may be found at www.atcepoxy.com.

Clean-Up: Clean uncured materials from tools and equipment with mild solvents. Cured material can only be removed mechanically.

Limitations & Warnings:

- . Do not thin with solvents, as this will prevent cure
- For anchoring applications, concrete should be a minimum of 21 days old prior to anchor installation per ACI 355.4

Safety: Please refer to the Safety Data Sheet (SDS) for ULTRABOND HYB-2CC. Call ATC for more information at 1-800-892-1880.

Specification: Anchoring adhesive shall be a two component, 10:1 ratio by volume, hybrid anchoring system supplied in pre-measured cartridges. Adhesive must meet the requirements of C881-15 specification for Type I, II, IV, and V, Grade 3 Class A, B & C and must have a compressive yield strength of 15,049 psi (104 MPa) at 73 °F (23 °C) after a 7 day cure. Adhesive shall be ULTRABOND HYB-2CC from Adhesives Technology Corp., Pompano Beach, Florida. Anchors shall be installed per the Manufacturer's Printed Installation Instructions (MPII) for ULTRABOND HYB-2CC anchoring system.

Revision 1.2

Anchoring

MATERIAL SPECIFICATION

TABLE 1: ULTRABOND HYB-2CC performance to ASTM C881-15^{1,2,3}

				Sample Co	onditioning Te	mperature		
Property	Cure	ASTM	Units	Class A	Class B	Class C		
T Topolity	Time	Standard	011110	32 °F (0 °C)	40 °F (4 °C)	60 °F (16 °C)		
Gel Time - 60 Gram Mass ^{4,5}		C881	min	26	14	6		
Consistency or Viscosity		0001		Non-sag				
Compressive Yield Strength	7 day	D695	psi (MPa)	10,347 (71.3)	13,400 (92.4)	15,049 (104)		
Compressive Modulus	7 day	D095	psi (MPa)	1,407,000 (9,701)	1,573,030 (10,846)	1,676,320 (11,558)		
Bond Strength ⁶	2 day	C882	psi (MPa)	2,839 (19.6)	2,824 (19.5)	2,812 (19.4)		
Hardened to Hardened Concrete	14 day	C002	psi (MPa)	3,211 (22.1)	3,143 (21.7)	3,270 (22.5)		
Heat Deflection Temperature ⁷	7 day	D648	°F (°C)	258 (126)				
Water Absorption ⁷	14 day	D570	%	0.90				
Linear Coefficient of Shrinkage ⁷		D2566	⁻ /0		0.000			

- Product testing results based on representative lot(s). Average results will vary according to the tolerances of the given property.
 Full cure time is listed above to obtain the given properties for each product characteristic.
 Results may vary due to environmental factors such as temperature, moisture and type of substrate.

- 4. Per ASTM C881 Section 5.2 minimum Gel Time of 5 minutes may be specified when automatic proportioning, mixing and dispensing equipment is used for Types I and IV.
- 5. Properties tested at 50 °F (10° C) for Class B.
 6. Property tested at 35 °F (2 °C) for class A and 73 °F (23 °C) for Class C.
- 7. Specimens cured at 73 °C (23 °C).

TABLE 2: ULTRABOND HYB-2CC NSF/ANSI CERTIFICATION

ANSI Certification	Description	Application	Water Contact Temperature	Anchor Sizes Installed in Concrete
NSF 61	Drinking Water System Components - Health Effects	Joining and Sealing Materials	Commercial Hot 180 ± 4 °F (82 ± 2 °C)	Threaded Rod and Rebar ≤ 1 1/4 in. Diameter

Anchoring

ULTRABOND HYB-2CC has been tested and assessed by an accredited independent testing laboratory in accordance with ICC -ES AC308, ACI 355.4 and ASTM E488 for use in cracked and uncracked normal weight and lightweight concrete, for loading conditions including seismic and wind, for structural design to ACI 318-14 Chapter 17 (ACI 318-11/08 Appendix D) and is approved per ICC-ES ESR-4535. The design process and parameters for ULTRABOND HYB-2CC are shown in Figure 1 and Tables 4 - 15 for Strength Design. Tables 16 and 17 show the determination of development length for post-installed reinforcing bar connections.

FIGURE 1 - ULTRABOND HYB-2CC FLOW CHART FOR THE ESTABLISHMENT OF DESIGN STRENGTH

TABLE 3: DESIGN STRENGTH - TABLE REFERENCE INDEX

DESIGN STRENGTH ¹ - THREADED RODS	Fractional	Metric
Steel Strength - N_{sa} , V_{sa}	Table 4	Table 7
Concrete Strength - N_{pn} , N_{sb} , N_{sbg} , N_{cb} , N_{cbg} , V_{cb} , V_{cpg}	Table 5	Table 8
Bond Strength ² - N _a , N _{ag}	Table 6	Table 9
DESIGN STRENGTH ¹ - REINFORCING BAR	Fractional	Metric
Steel Strength - N_{sa} , V_{sa}	Table 10	Table 13
Concrete Strength - N_{pn} , N_{sb} , N_{sbg} , N_{cb} , N_{cbg} , V_{cb} , V_{cbg} , V_{cp} , V_{cpg}	Table 11	Table 14
Bond Strength ² - N _a , N _{ag}	Table 12	Table 15
Determination of development length for post- installed reinforcing bar connections	Table 16	Table 17

^{1.} Ref. ACI 318-14 17.3.1.1 or 318-11 D.4.1.1, as applicable.

^{2.} See Section 4.1.4 of the ICC evaluation report.

Anchoring

	ULTRABOND HYB-2CC STEEL						readed R	od		
	Design Information	Symbol	Units	3/8"	1/2"	5/8"	3/4"	7/8"	1"	1 1/4"
N	Isminal Anghar Diameter	d	in.	0.375	0.500	0.625	0.750	0.875	1.000	1.250
IN	Iominal Anchor Diameter	a	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(31.8)
Throad	led Rod Cross-Sectional Area	A _{se}	in. ²	0.078	0.142	0.226	0.335	0.462	0.606	0.969
Tillead	ded Nod Closs-Sectional Area	Ase	(mm ²)	(50)	(92)	(146)	(216)	(298)	(391)	(625)
	Name in all Chromonth	N _{sa}	lb.	4,495	8,230	13,110	19,400	26,780	35,130	56,210
	Nominal Strength as Governed by	I Vsa	(kN)	(20.0)	(36.6)	(58.3)	(86.3)	(119.1)	(156.3)	(250.0)
	Steel Strength	V _{sa}	lb.	2,695	4,940	7,860	11,640	16,070	21,080	33,725
ASTM A36	-	* Sa	(kN)	(12.0)	(22.0)	(35.0)	(51.8)	(71.5)	(93.8)	(150.0)
Grade 36 F1554	Reduction Factor for Seismic Shear	$a_{V,seis}$					0.60			
Grade 36	Strength Reduction Factor for Tension ²	φ					0.75			
	Strength Reduction Factor for Shear ²	φ					0.65			
	N : 10: "	N _{sa}	lb.	5,815	10,645	16,950	25,090	34,630	45,430	72,685
	Nominal Strength as Governed by	IVsa	(kN)	(25.9)	(47.4)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)
	Steel Strength	V _{sa}	lb.	3,490	6,385	10,170	15,055	20,780	27,260	43,610
ASTM		▼ sa	(kN)	(15.5)	(28.4)	(45.2)	(67.0)	(92.4)	(121.3)	(194.0)
F1554 Grade 55	Reduction Factor for Seismic Shear	$a_{V,seis}$					0.60			
0.000	Strength Reduction Factor for Tension ²	φ					0.75			
	Strength Reduction Factor for Shear ²	φ					0.65			
	Name in al. Other moth	N _{sa}	lb.	9,685	17,735	28,250	41,810	57,710	75,710	121,135
	Nominal Strength as Governed by	IVsa	(kN)	(43.1)	(78.9)	(125.7)	(186.0)	(256.7)	(336.8)	(538.8)
A O.T. A A 400	Steel Strength	V_{sa}	lb.	5,810	10,640	16,950	25,085	34,625	45,425	72,680
ASTM A193 B7	-	- Sa	(kN)	(25.8)	(47.3)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)
ASTM F1554	Reduction Factor for Seismic Shear	$\alpha_{V,seis}$					0.60			
Grade 105	Strength Reduction Factor for Tension ²	φ					0.75			
	Strength Reduction Factor for Shear ²	φ					0.65			
	Naminal Strangth	N _{sa}	lb.	9,300	17,030	27,120	40,140	55,405	72,685	101,755
	Nominal Strength as Governed by	, •sa	(kN)	(41.4)	(75.8)	(120.6)	(178.6)	(246.5)	(323.3)	(452.6)
	Steel Strength	V_{sa}	lb.	5,580	10,220	16,270	24,085	33,240	43,610	61,055
	-	Ja	(kN)	(24.8)	(45.5)	(72.4)	(107.1)	(147.9)	(194.0)	(271.6)
ASTM A449	Reduction Factor for Seismic Shear	$a_{V,seis}$					0.60			
	Strength Reduction Factor for Tension ²	φ					0.75			
-	Strength Reduction Factor for Shear ²	φ					0.65			

Anchoring

TECHNICAL DATA

TABLE 4 (Continued): ULTRABOND HYB-2CC STEEL design information for THREADED ROD1

TABLE 4 (CO	ntinuea): ULTRA	BONDI	110-200	JILEL GE	aigii iiiioiilia					
Design	Information	Symbol	Units				hreaded Ro			
200.9	ormanon	Cymso.	010	3/8"	1/2"	5/8"	3/4"	7/8"	1"	1 1/4"
		N/	lb.	5,620	10,290	16,385	24,250	33,470	43,910	70,260
	Nominal Strength	N _{sa}	(kN)	(25.0)	(45.8)	(72.9)	(107.9)	(148.9)	(195.3)	(312.5)
	as Governed by Steel Strength		lb.	3,370	6,175	9,830	14,550	20,085	26,350	42,155
	Oteer Otterigut	V _{sa}	(kN)	(15.0)	(27.5)	(43.7)	(64.7)	(89.3)	(117.2)	(187.5)
ASTM F568M Class 5.8	Reduction Factor for Seismic Shear	$a_{V,seis}$					0.60			
	Strength Reduction Factor for Tension ²	φ					0.65			
	Strength Reduction Factor for Shear ²	φ					0.60			
		N _{sa}	lb	7,750	14,190	22,600	28,430	39,245	51,485	82,370
	Nominal Strength as Governed by	IVsa	(kN)	(34.5)	(63.1)	(100.5)	(126.5)	(174.6)	(229.0)	(366.4)
	Steel Strength	V _{sa}	lb	4,650	8,515	13,560	17,060	23,545	30,890	49,425
ASTM F593	otoor otronger	v _{sa}	(kN)	(20.7)	(37.9)	(60.3)	(75.9)	(104.7)	(137.4)	(219.9)
CW Stainless Types 304 &	Reduction Factor for Seismic Shear	$a_{V,seis}$					0.60			
316	Strength Reduction Factor for Tension ²	φ					0.65			
	Strength Reduction Factor for Shear ²	φ					0.60			
		M	lb	7,365	13,480	21,470	31,780	43,860	57,540	92,065
	Nominal Strength as Governed by	N _{sa}	(kN)	(32.8)	(60.0)	(95.5)	(141.4)	(195.1)	(256.0)	(409.5)
	Steel Strength	1/	lb	4,420	8,090	12,880	19,070	26,320	34,525	55,240
ASTM A193/	Oteer Ottengtii	V _{sa}	(kN)	(19.7)	(36.0)	(57.3)	(84.8)	(117.1)	(153.6)	(245.7)
A193M Grade B8/	Reduction Factor for Seismic Shear	$a_{V,seis}$					0.60			
B8M, Class 2B	Strength Reduction Factor for Tension ²	φ					0.75			
	Strength Reduction Factor for Shear ²	φ					0.65			

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi 1. Values provided for common rod material types are based on specified strength and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers must comply with requirements for the rod.

^{2.} The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3., as applicable are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D4.4.

Anchoring

TECHNICAL DATA

TABLE 5: ULTRABOND HYB-2CC CONCRETE BREAKOUT design information for THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL and CARBIDE BIT 1

Danisas Informacijas	Course la sal	Heite			Th	readed Rod			
Design Information	Symbol	Units	3/8"	1/2"	5/8"	3/4"	7/8"	1"	1 1/4"
Minimum Embedment Depth	h _{ef.min}	in.	2 3/8	2 3/4	3 1/8	3 1/2	3 1/2	4	5
William Embedment Depth	l lef,min	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(127)
Maximum Embedment Depth	h _{ef.max}	in.	7 1/2	10	12 1/2	15	17 1/2	20	25
Waximum Embedment Depth	r et,max	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(635)
Effectiveness Factor for	k _{c.cr}	in-lb				17			
Cracked Concrete	N _{C,C} r	(SI)				(7)			
Effectiveness Factor for	k _{c.uncr}	in-lb				24			
Uncracked Concrete	Nc,uncr	(SI)				(10)	T	ı	
Minimum Spacing Distance	S _{min}	in.	1 7/8	2 1/2	3	3 3/4	4 1/4	4 3/4	5 7/8
William Spacing Distance	3 _{min}	(mm)	(48)	(64)	(76)	(95)	(108)	(121)	(149)
					2	2 3/8	2 1/2	2 3/4	3 1/4
Minimum Edge Distance	C _{min}	in.	1 5/8	1 3/4	(51)	(60)	(64)	(70)	(83)
William Eage Blotanes	Sillin	(mm)	(41)	(44)			er edge dista		
					S	ee Section 4	.1.9 of ICC-E	SR 4535	
Minimum Concrete Thickness	h _{min}	in.	h _{ef} +	1.25	h.	+ 2da where	d_0 Is the ho	le diameter	,
William Concrete Trickness	1 min	(mm)	(h _{ef} ·	+ 30)	l let	1 Zu _{0,} where	t u ₀ is the no	ie diametei	
Critical Edge Distance (Uncracked Concrete Only)	C _{ac}				See section 4	I.1.10 of ICC	-ESR 4535		
Strength Reduction Factor for Tension, Concrete Failure Mode, Condition B ²	φ		0.65						
Strength Reduction Factor for Shear, Concrete Failure Mode, Condition B ²	φ		- 0.70						

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

Additional setting information is described the installation instructions.

² Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of *φ* applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of *φ* must be determined in accordance with ACI 318-11 D.4.4.

Anchoring

TABLE 6: ULTRABOND HYB-2CC BOND STRENGTH design information for THREADED ROD in holes drilled with a HAMMER DRILL and CARBIDE BIT 1,2,3

		Decima Information		Cuma la a l	l le!4a	Threaded Rod							
		Design Information		Symbol	Units	3/8"	1/2"	5/8"	3/4"	7/8"	1"	1 1/4"	
	Mi	nimum Embedment De	pth	h _{ef,min}	in. (mm)	2 3/8 (60)	2 3/4 (70)	3 1/8 (79)	3 1/2 (89)	3 1/2 (89)	4 (102)	5 (127)	
	Ma	aximum Embedment De	epth	h _{ef,max}	in. (mm)	7 1/2 (191)	10 (254)	12 1/2 (318)	15 (381)	17 1/2 (445)	20 (508)	25 (635)	
Ter	laximum Long m Temperature 22 °F (50 °C)	Cracked Concrete Characteristic Bond Strength	With Sustained Load or No sustained Load ⁴	$\mathcal{T}_{\mathit{k,cr}}$	psi (MPa)	1,040 (7.2)	1,040 (7.2)	1,110 (7.7)	1,220 (8.4)	1,210 (8.3)	1,205 (8.3)	1,145 (7.9)	
M Ter	aximum Short m Temperature 76 °F 80 °C) ³	Uncracked Concrete Characteristic Bond Strength	With Sustained Load or No sustained Load ⁴	$\mathcal{T}_{\mathit{k},uncr}$	psi (MPa)	2,600 (17.9)	2,415 (16.7)	2,260 (15.6)	2,140 (14.8)	2,055 (14.2)	2,000 (13.8)	1,990 (13.7)	
Ter	laximum Long m Temperature 61 °F (72 °C)	Cracked Concrete Characteristic Bond Strength	With Sustained Load or No sustained Load ⁴	$\mathcal{T}_{\mathit{k,cr}}$	psi (MPa)	905 (6.2)	905 (6.2)	965 (6.7)	1,060 (7.3)	1,055 (7.3)	1,050 (7.2)	995 (6.9)	
M Ter	aximum Short m Temperature 18 °F (120 °C) ³	Uncracked Concrete Characteristic Bond Strength	With Sustained Load or No sustained Load ⁴	$T_{k,uncr}$	psi (MPa)	2,265 (15.6)	2,100 (14.5)	1,970 (13.6)	1,865 (12.9)	1,785 (12.3)	1,740 (12.0)	1,730 (11.9)	
		Cracked Concrete Characteristic Bond	With Sustained Load ⁴	$T_{k,cr}$	psi (MPa)	650 (4.5)	655 (4.5)	695 (4.8)	765 (5.3)	760 (5.2)	755 (5.2)	720 (5.0)	
Ter	laximum Long m Temperature 12 °F (100 °C)	Strength	No Sustained Load	I k,cr	psi (MPa)	800 (5.5)	806 (5.6)	855 (5.9)	941 (6.5)	935 (6.4)	929 (6.4)	886 (6.1)	
Ter	aximum Short m Temperature 20 °F (160 °C) ³	Uncracked Concrete Characteristic Bond	With Sustained Load ⁴	T	psi (MPa)	1,630 (11.2)	1,515 (10.4)	1,420 (9.8)	1,345 (9.3)	1,290 (8.9)	1,255 (8.7)	1,250 (8.6)	
		Strength	No Sustained Load	$T_{k,uncr}$	psi (MPa)	2,005 (13.8)	1,863 (12.8)	1,747 (12.0)	1,654 (11.4)	1,587 (10.9)	1,544 (10.6)	1,538 (10.6)	
	Reduct	ion Factor for Seismic 1	「ension ⁵	α _{N,seis}					0.95				
Dry Concrete		Dry Concrete	\$ d					0.65					
Periodic Inspection	Strength Reduction Factors for Permissible Installation Conditions		Water Saturated Concrete	φ _{ws}					0.55				
<u> इ</u>		Water-Filled in Concre		$oldsymbol{\phi}_{wf}$		0.45							

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi 1 Characteristic bond strength values correspond to concrete compressive strength f'_c =2,500 psi (17.2 MPa). For concrete compressive strength f'_c between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'_c /2,500) $^{0.10}$. See Section 4.1.4 of ICC-ESR

²Lightweight concrete may be used by applying a reduction factor as given in ACI 318-14 17.2.6 or ACI 318-11 Appendix D Section D.3.6 as applicable.
³Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a results of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴Characteristic bond strength values are for sustained loads (when noted), including dead and live loads.

⁵For structures assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by αN,seis.

Anchoring

TECHNICAL DATA

TABLE 7: ULTRABOND HYB-2CC STEEL design information for REBAR¹

	: ULTRABUND HY						Reba	r Size			
Desi	gn Information	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
Nomina	I Anchor Diameter	d	in. (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.125 (28.6)	1.250 (31.8)
Cross	Rebar -Sectional Area ³	A _{se}	in² (mm²)	0.110 (71)	0.200 (129)	0.310 (200)	0.440 (284)	0.600 (387)	0.790 (510)	1.000 (645)	1.270 (819)
	Nominal Strength as Governed by	N _{sa}	lb. (kN)	6,600 (29.4)	12,000 (53.4)	18,600 (82.7)	26,400 (117.4)				
	Steel Strength	V _{sa}	lb. (kN)	3,960 (17.6)	7,200 (32.0)	11,160 (49.6)	15,840 (70.5)		ide 40 reinfo only availal hrough #6 p	ble in sizes	
ASTM A615 Grade 40	Reduction Factor for Seismic Shear	$a_{V,seis}$			0.	65		#31	niiougn ii o p	DEI AOTIII A	015
Grade 40	Strength Reduction Factor for Tension ²	φ					0.0	65			
	Strength Reduction Factor for Shear ²	φ					0.0	60			
	Nominal Strength as Governed by	N _{sa}	lb. (kN)	9,900 (44.0)	18,000 (80.1)	27,900 (124.1)	39,600 (176.1)	54,000 (240.2)	71,100 (316.3)	90,000 (400.3)	114,300 (508.4)
	Steel Strength	V _{sa}	lb. (kN)	5,940 (26.4)	10,800 (48.0)	16,740 (74.5)	23,760 (105.7)	32,400 (144.1)	42,660 (189.8)	68,580 (305.1)	
ASTM A615 Grade 60	Reduction Factor for Seismic Shear	$a_{V,seis}$					0.0	65			
Grade 00	Strength Reduction Factor for Tension ²	φ					0.0	65			
	Strength Reduction Factor for Shear ²	φ					0.0	60			
	Nominal Strength as Governed by	N _{sa}	lb. (kN)	8,800 (39.1)	16,000 (71.2)	24,800 (110.3)	35,200 (156.6)	48,000 (213.5)	63,200 (281.1)	80,000 (355.9)	101,600 (451.9)
	Steel Strength	V _{sa}	lb. (kN)	5,280 (23.5)	9,600 (42.7)	14,880 (66.2)	21,120 (93.9)	28,800 (128.1)	37,920 (168.7)	48,000 (213.5)	60,960 (271.2)
ASTM A706 Grade 60	Reduction Factor for Seismic Shear	$a_{V,seis}$					0.0	65	(168.7) (213.5) (271		
Stade 50	Strength Reduction Factor for Tension ²	φ					0.	75			
	Strength Reduction Factor for Shear ²	φ					0.0	65			

For SI: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

Values provided for common rod material types are based on specified strength and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.

For use with load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If

² For use with load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. I the load combinations of ACI 318-11 Appendix C are used, the appropriate value of *ϕ* must be determined in accordance with ACI 318-11 D4.4.

³ Cross-sectional area is minimum stress area applicable for either tension or shear.

Anchoring

TABLE 8: ULTRABOND HYB-2CC CONCRETE BREAKOUT design information for REBAR in holes drilled with a HAMMER DRILL and CARBIDE BIT 1

						Reba	r Size			
Design Information	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
Minimum Embedment Depth	h _{ef,min}	in. (mm)	2 3/8 (60)	2 3/4 (70)	3 1/8 (79)	3 1/2 (89)	3 1/2 (89)	4 (102)	4 1/2 (114)	5 (127)
Maximum Embedment Depth	h _{ef,max}	in. (mm)	7 1/2 (191)	10 (254)	12 1/2 (318)	15 (381)	17 1/2 (445)	20 (508)	22 1/2 (572)	25 (635)
Effectiveness Factor for Cracked Concrete	k _{c,cr}	in-lb (SI)				1 (7	7 7)			
Effectiveness Factor for Uncracked Concrete	K _{c,uncr}	in-lb (SI)				2 (1	· · ·			
Minimum Spacing Distance	S _{min}	in. (mm)	1 7/8 (48)	2 1/2 (64)	3 (76)	3 3/4 (95)	4 1/4 (108)	4 3/4 (121)	5 1/4 (133)	5 7/8 (149)
Minimum Edge Distance	C _{min}	in.	1 5/8	1 3/4	2 (51)	2 3/8 (60)	2 1/2 (64)	2 3/4 (70)	3 (76)	3 1/4 (83)
- Inniniani Lago Diotanos	- Trillin	(mm)	(41)	(44)			r smaller ed ection 4.1.9			
Minimum Concrete Thickness	h _{min}	in. (mm)	h _{ef} + (h _{ef} -	1.25 + 30)		h_{ef} + $2d_0$, where d_0 i	s the hole	diameter	
Critical Edge Distance (Uncracked Concrete Only)	C _{ac}				See Se	ction 4.1.10	of ICC-ES	R 4535		
Strength Reduction Factor for Tension, Concrete Failure Mode, Condition B ²	φ					0.0	65			
Strength Reduction Factor for Shear, Concrete Failure Mode, Condition B ²	φ		0.70							

For SI: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

¹ Additional setting information is decribed in Figure 6, installation instructions.

² Condition A requires supplemental reinforcement, while condition B applies where supplemental reinforcement is not provided or where pullout or pryout governes, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of f applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 Section 9.2, as applicable, as set forth in ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of f must be determined in accordance with ACI 318-11 D.4.4.

Anchoring

TECHNICAL DATA

TABLE 9: ULTRABOND HYB-2CC BOND STRENGTH design information for REBAR in holes drilled with a HAMMER DRILL

		De alore Informe ette		O h - 1	1114				Rebai	Size				
		Design Informatio	n	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10	
	N	linimum Embedment I	Depth	h _{ef.min}	in.	2 3/8	2 3/4	3 1/8	3 1/2	3 1/2	4	4 1/2	5	
					(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(114)	(127) 25	
	N	laximum Embedment	Depth	h _{ef,max}	in. (mm)	7 1/2 (191)	10 (254)	12 1/2 (318)	15 (381)	17 1/2 (445)	20 (508)			
Term	aximum Long n Temperature 22 °F (50 °C)	Cracked Concrete Characteristic Bond Strength	With Sustained Load or No sustained Load ⁴	$\mathcal{T}_{\mathit{k,cr}}$	psi (MPa)	1,090 (7.5)	1,055 (7.3)	1,130 (7.8)	1,170 (8.1)	1,175 (8.1)	1,155 (8.0)	1,140 (7.9)	1,165 (8.0)	
Term	eximum Short on Temperature of °F 80 °C) ³	Uncracked Concrete Characteristic Bond Strength	With Sustained Load or No sustained Load ⁴	$\mathcal{T}_{k,uncr}$	psi (MPa)	2,200 (15.2)	2,100 (14.5)	2,030 (14.0)	1,970 (13.6)	1,920 (13.2)	1,880 (13.0)	,	1,815 (12.5)	
Term	aximum Long n Temperature i1 °F (72 °C)	Cracked Concrete Characteristic Bond Strength	With Sustained Load or No sustained Load ⁴	$\mathcal{T}_{\mathit{k,cr}}$	psi (MPa)	945 (6.5)	915 (6.3)	980 (6.8)	1,015 (7.0)	1,020 (7.0)	1,005 (6.9)	995 (6.9)	1,010 (7.0)	
Term	eximum Short in Temperature 3 °F (120 °C) ³	Uncracked Concrete Characteristic Bond Strength	With Sustained Load or No sustained Load ⁴	$\mathcal{T}_{k,uncr}$	psi (MPa)	1,915 (13.2)	1,830 (12.6)	1,765 (12.2)	1,715 (11.8)		1,635 (11.3)	1,615 (11.1)	1,580 (10.9)	
Ma	aximum Long	Cracked Concrete	With Sustained Load ⁴	-	psi (MPa)	680 (4.7)	660 (4.6)	705 (4.9)	735 (5.1)	735 (5.1)	725 (5.0)	715 (4.9)	730 (5.0)	
Term	n Temperature 2 °F (100 °C)	Characteristic Bond Strength	No Sustained Load	$T_{k,cr}$	psi (MPa)	836 (5.8)	812 (5.6)	867 (6.0)	904 (6.2)	904 (6.2)	892 (6.1)	879 (6.1)	898 (6.2)	
Term	ximum Short n Temperature	Uncracked Concrete	With Sustained Load ⁴	σ.	psi (MPa)	1,380 (9.5)	1,315 (9.1)	1,270 (8.8)	1,235 (8.5)	1,205 (8.3)	1,180 (8.1)	1,155 (8.0)	1,140 (7.9)	
320) °F (160 °C) ³	Characteristic Bond Strength	No Sustained Load	T _{k,uncr}	psi (MPa)	1,697 (11.7)	1,617 (11.2)	1,562 (10.8)	1,519 (10.5)	1,482 (10.2)	1,451 (10.0)	1,421 (9.8)	1,402 (9.7)	
	Reduc	Reduction Factor for Seismic Tension ⁵		$a_{N,seis}$		0.9	95			1.0	00			
lic ion	Dry Concrete		Dry Concrete	φ _d		0.65								
Periodic Inspection	Factors	th Reduction for Permissible ion Conditions	Water Saturated Concrete	$oldsymbol{\phi}_{ws}$					0.8	55				
=	motaliat	ion conditions	Water-Filled Holes in Concrete	$\phi_{\scriptscriptstyle Wf}$					0.4	45				

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi 1 Characteristic bond strength values correspond to concrete compressive strength f'_c =2,500 psi (17.2 MPa). For concrete compressive strength f'_c between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f'_c/2,500)^{0.10}$. See Section 4.1.4 ICC-ESR 4535.

²Lightweight concrete may be used by applying a reduction factor as given in ACI 318-14 17.2.6 or ACI 318-11 Appendix D Section D.3.6 as applicable.

³Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a results of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴Characteristic bond strengths are for sustained loads (when noted) including live and dead loads.

⁵For structures assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by αN,seis.

Anchoring

TECHNICAL DATA

TABLE 10: ULTRABOND HYB-2CC STEEL design information for METRIC THREADED ROD1

TABLE 10.	ULTRABOND HY	B-200 S) I EEL (Jesign imon	mation for N		ic Threaded			
Desig	n Information	Symbol	Units	M10	M12	M16	M20	M24	M27	M30
Nominal	Anchor Diameter	d	mm (in.)	10 (0.39)	12 (0.47)	16 (0.63)	20 (0.79)	24 (0.94)	27 (1.06)	30 (1.18)
	readed Rod Sectional Area	A _{se}	mm² (in.²)	58.0 0.090	84.3 0.131	157 0.243	245 0.380	353 0.547	459 0.711	561 0.876
	Nominal Strength as Governed by	N _{sa}	kN (lb)	29.0 (6,518)	42.2 (9,473)	78.5 (17,643)	122.5 (27,532)	176.5 (39,668)	229.5 (51,580)	280.5 (63,043)
	Steel Strength	V _{sa}	kN (lb)	17.4 (3,911)	25.3 (5,684)	47.1 '10,586)	73.5 (16,519)	105.9 (23,801)	137.7 (30,948)	168.3 (37,826)
ISO 898-1 Class 5.8	Reduction Factor for Seismic Shear	$a_{V,seis}$					0.60			
	Strength Reduction Factor for Tension ²	φ					0.65			
	Strength Reduction Factor for Shear ²	φ					0.60			
	Nominal Strength as Governed by	N _{sa}	kN (lb)	46.4 (10,428)	67.4 (15,157)	125.6 (28,229)	196 (44,051)	282.4 (63,470)	367.2 (82,528)	448.3 (100,868)
	Steel Strength	V _{sa}	kN (lb)	27.8 (6,257)	40.5 (9,094)	75.4 (16,937)	117.6 (26,431)	169.4 (38,082)	220.3 (49,517)	269.3 (60,521)
ISO 898-1 Class 8.8	Reduction Factor for Seismic Shear	$a_{V,seis}$					0.60			
	Strength Reduction Factor for Tension ²	φ					0.65			
	Strength Reduction Factor for Shear ²	φ					0.60			
	Nominal Strength as Governed by	N _{sa}	kN (lb)	40.6 (9,125)	59 (13,263)	109.9 (24,700)	171.5 (38,545)	247.1 (55,536)	229.5 (51,580)	280.5 (63,043)
	Steel Strength	V _{sa}	kN (lb)	24.4 (5,475)	35.4 (7,958)	65.9 (14,820)	102.9 (23,127)	148.3 (33,322)	137.7 (30,948)	168.3 (37,826)
ISO 3506-1 A4 stainless steel ³	Reduction Factor for Seismic Shear	$a_{V,seis}$		0.60						
	Strength Reduction Factor for Tension ²	φ		0.65						
	Strength Reduction Factor for Shear ²	φ		0.60						

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

¹Values provided for common rod material types are based on specified strength and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers must comply with requirements for the rod.

²The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3., as applicable are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-11 D4.4.

³A4-70 Stainless steel (M8-M24); A4-50 Stainless steel (M27-M30).

Anchoring

TABLE 11: ULTRABOND HYB-2CC CONCRETE BREAKOUT design information for METRIC THREADED ROD in holes drilled with a HAMMER DRILL and CARBIDE BIT1

Design Information	Compleal	l luita			Metr	ic Threaded	Rod		
Design Information	Symbol	Units	M10	M12	M16	M20	M24	M27	M30
Minimum Embedment Depth	h _{ef,min}	in. (mm)	60 (2.4)	70 (2.8)	80 (3.1)	90 (3.5)	96 (3.8)	108 (4.3)	120 (4.7)
Maximum Embedment Depth	h _{ef,max}	in. (mm)	200 (7.9)	240 (9.4)	320 (12.6)	400 (15.7)	480 (18.9)	540 (21.3)	600 (23.6)
Effectiveness Factor for Cracked Concrete	K _{c,cr}	SI (in-lb)	, ,			7 (17)			
Effectiveness Factor for Uncracked Concrete	K _{c,uncr}	SI (in-lb)				10 (24)			
Minimum Spacing Distance	S _{min}	mm (in.)	50 (2)	60 (2 3/8)	75 (3)	95 (3 3/4)	115 (4 1/2)	125 (5)	140 (5 1/2)
		mm	40	45	50 (2)	60 (2 3/8)	65 (2 1/2)	75 (3)	80 (3 1/8)
Minimum Edge Distance	C _{min}	(in.)	(1 5/8)	(1 3/4)			aller edge di 4.1.9 of ICC		
Minimum Concrete Thickness	h _{min}	mm (in.)	0,	+ 30 1.25)	r	$n_{ef} + 2d_0^3$ whe	ere d_0 is the	hole diamete	er
Critical Edge Distance (Uncracked Concrete Only)	C _{ac}	-			See Section	4.1.10 of IC	C-ESR 453	5	
Strength Reduction Factor for Tension, Concrete Failure Mode, Condition B ²	φ					0.65			
Strength Reduction Factor for Shear, Concrete Failure Mode, Condition B ²	φ		0.70						

For SI: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

¹ Additional setting information is decribed in Figure 6, installation instructions.

² Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4.

Anchoring

TECHNICAL DATA

TABLE 12: ULTRABOND HYB-2CC BOND STRENGTH design information for METRIC THREADED ROD in holes drilled with a HAMMER DRILL and CARBIDE BIT 1,2

		Design Information		Symbol	Units			Metric	Thread	ed Rod		
		Design information		Syllibol	Ullits	M10	M12	M16	M20	M24	M27	M30
		Minimum Embedment Dept	h	h _{ef,min}	mm (in.)	60 (2.4)	70 (2.8)	80 (3.1)	90 (3.5)	96 (3.8)	108 (4.3)	120 (4.7)
		Maximum Embedment Dept	:h	h _{ef,max}	mm (in.)	200 (7.9)	240 (9.4)	320 (12.6)	400 (15.7)	480 (18.9)	540 (21.3)	600 (23.6)
Term 122	imum Long Temperature ° F (50 °C)	Cracked Concrete Characteristic Bond Strength	With Sustained Load or No sustained Load ⁴	T _{k,cr}	MPa (psi)	7.2 (1,039)	7.2 (1,043)	7.7 (1,110)	8.4 (1,217)	8.3 (1,209)	8.3 (1,204)	7.9 (1,149)
Term ⁻	mum Short Temperature °F 80 °C) ³	Uncracked Concrete Characteristic Bond Strength	With Sustained Load or No sustained Load ⁴	$\mathcal{T}_{\mathit{k},uncr}$	MPa (psi)	17.7 (2,571)	16.9 (2,453)	15.6 (2,256)	14.6 (2,112)	13.9 (2,020)	13.7 (1,985)	13.7 (1,980)
Term ⁻ 161	imum Long Temperature ° F (72 °C)	Cracked Concrete Characteristic Bond Strength	With Sustained Load or No sustained Load ⁴	$\mathcal{T}_{k,cr}$	MPa (psi)	6.2 (904)	6.3 (908)	6.7 (966)	7.3 (1,058)	7.2 (1,052)	7.2 (1,047)	6.9 (999)
Term 7	mum Short Temperature F (120 °C) ³	Uncracked Concrete Characteristic Bond Strength	With Sustained Load or No sustained Load ⁴	$\mathcal{T}_{k,uncr}$	MPa (psi)	15.4 (2,237)	14.7 (2,134)	13.5 (1,963)	12.7 (1,837)	12.1 (1,757)	11.9 (1,727)	11.9 (1,723)
		Cracked Concrete	With Sustained Load ⁴	$T_{k,cr}$	MPa (psi)	4.5 (651)	4.5 (654)	4.8 (696)	5.3 (763)	5.2 (758)	5.2 (755)	5.0 (720)
Term 7	imum Long Temperature °F (100 °C)	Characteristic Bond Strength	No Sustained Load	, K,CI	MPa (psi)	5.5 (803)	5.5 (803)	5.9 (856)	6.5 (945)	6.4 (927)	6.4 (927)	6.2 (892)
Maxii Term ⁻	mum Short Temperature F (160 °C) ³	Uncracked Concrete	With Sustained Load ⁴	_	MPa (psi)	11.1 (1,612)	10.6 (1,538)	9.8 (1,415)	9.1 (1,324)	8.7 (1,266)	8.6 (1,245)	8.6 (1,241)
		Characteristic Bond Strength	No Sustained Load	$T_{k,uncr}$	MPa (psi)	13.7 (1,980)	13.0 (1,891)	12.1 (1,748)	11.2 (1,623)	10.7 (1,552)	10.6 (1,534)	10.6 (1,534)
	R	eduction Factor for Seismic Te	nsion ⁵	$a_{N,seis}$					0.95			
ي ج			Dry Concrete	φ _d					0.65			
Periodic Inspection	Fa	Strength Reduction ctors for Permissible stallation Conditions	Water Saturated Concrete	$oldsymbol{\phi}_{ws}$		0.55						
, u			Water-Filled Holes in Concrete	$\phi_{\scriptscriptstyle Wf}$	0.45							

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

¹Characteristic bond strength values correspond to concrete compressive strength f′_c =2,500 psi (17.2 MPa). For concrete compressive strength f′_c between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f′_c /2,500)^{0.10}. See Section 4.1.4 of ICC-ESR 4535.

²Lightweight concrete may be used by applying a reduction factor as given in ACI 318-14 17.2.6 or ACI 318-11 Appendix D Section D.3.6 as applicable.

³ Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a results of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

4Characteristic bond strength values are for sustained loads (when noted), including dead and live loads.

⁵For structures assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by αN,seis.

Anchoring

TECHNICAL DATA

TABLE 13: ULTRABOND HYB-2CC STEEL design information for METRIC REBAR¹

	O. OLIVADONDIIID-							ebar Size			
De	esign Information	Symbol	Units	Ø 10	ø 12	ø 14	ø 16	ø 20	Ø 25	ø 28	ø 32
Nom	inal Anchor Diameter	d	mm	10	12	14	16	20	25	28	32
Non	iliai Aliciloi Diailielei	u	(in.)	(0.315)	(0.394)	(0.472)	(0.551)	(0.630)	(0.787)	1.102	1.260
	Rebar	4	mm ²	78.5	113.1	153.9	201.1	314.2	490.9	615.8	804.2
Cro	oss-Sectional Area	A _{se}	(in.²)	(0.112)	(0.175)	(0.239)	(0.312)	(0.487)	(0.761)	(0.954)	(1.247)
		Λ/	kN	43.2	62.2	84.7	110.6	172.8	270	338.7	442.3
	Nominal Strength	N _{sa}	(lb)	(9,739)	(14,024)	(19,088)	(24,932)	(38,956)	(60,868)	(76,353)	(99,727)
	as Governed by Steel Strength		kN	25.9	37.3	50.8	66.4	103.7	162	203.2	265.4
		V _{sa}	(lb)	(5,843)	(8,414)	(11,453)	(14,959)	(23,373)	(36,521)	(45,812)	(59,836)
DIN 488 BSt 500	Reduction Factor for Seismic Shear	$lpha_{V,seis}$					0.	65			
	Strength Reduction Factor for Tension ²			0.65							
	Strength Reduction Factor for Shear ²			0.60							

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

¹Values provided for common rod material types are based on specified strength and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers must comply with requirements for the rod.

²The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3., as applicable are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-11 D.4.4.

Anchoring

TABLE 14: ULTRABOND HYB-2CC CONCRETE BREAKOUT design information for METRIC REBAR in holes with a HAMMER DRILL and CARBIDE BIT¹

Design Information	Symbol	Units				Metric R	ebar Size			
Design Information	Symbol	Units	ø 10	Ø 12	Ø 14	ø 16	ø 20	Ø 25	ø 28	ø 32
Minimum Embedment Depth	h	in.	60	70	75	80	90	100	112	128
Minimum Embedment Depth	h _{ef,min}	(mm)	(2.4)	(2.8)	(3.0)	(3.1)	(3.5)	(3.9)	(4.4)	(5.0)
Maximum Embedment Depth	h	in.	200	240	280	320	400	500	560	640
Maximum Embedment Depth	h _{ef,max}	(mm)	(7.9)	(9.4)	(9.4)	(12.6)	(15.7)	(19.7)	(22)	25.2
Effectiveness Factor for	k _{c.cr}	SI					7			
Cracked Concrete	N _{C,C}	(in-lb)				(1	7)			
Effectiveness Factor for	K _{c,uncr}	SI					0			
Uncracked Concrete	∧ _{c,uncr}	(in-lb)				(2	4)			
Minimum Spacing Distance	S _{min}	mm	50	60	70	75	95	120	130	150
Willim Opacing Distance	Smin	(in.)	(2)	(2 3/8)	(2 3/4)	(3)	(3 3/4)	(4 5/8)	(5 1/4)	(5 7/8)
					50	50	60	70	75	85
Minimum Edge Distance	C _{min}	mm (in.)	40	45	(2)	(2)	(2 3/8)	(2 3/4)	(3)	(3 1/8)
ů,		(in.)	(1 5/8)	(1 3/4)			r smaller ed ection 4.1.9			
Minimum Consusts Thiskness	-	mm	h _{ef} +	+ 30		l 0-l	3			
Minimum Concrete Thickness	h _{min}	(in.)	(h _{ef} +	1.25)		n _{ef} + 2a ₀	$_{0}^{3}$ where d_{0} i	s the note of	nameter	
Critical Edge Distance (Uncracked Concrete Only)	C _{ac}				See Se	ction 4.1.10	of ICC-ES	SR 4535		
Strength Reduction Factor for Tension, Concrete Failure Mode, Condition B ²	φ			0.65						
Strength Reduction Factor for Shear, Concrete Failure Mode, Condition B ²	φ			0.70						

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

¹ Additional setting information is described in Figure 6, installation instructions.

² Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of *ϕ* applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of *ϕ* must be determined in accordance with ACI 318-11 D.4.4.

Anchoring

TABLE 15: ULTRABOND HYB-2CC BOND STRENGTH design information for METRIC REBAR^{1,2}

		Danisus Information		Cumala al	l lusida			N	letric Re	ebar Siz	:e		
		Design Information		Symbol	Units	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
		Minimum Embedment Dept	h	h _{ef,min}	mm (in.)	60 (2.4)	70 (2.8)	80 (3.0)	90 (3.1)	96 (3.5)	100 (3.9)	112 (4.4)	128 (5.0)
		Maximum Embedment Dept	h	h _{ef,max}	mm (in.)	200 (7.9)	240 (9.4)	320 (11.0)	400 (12.6)	480 (15.7)	400 (19.7)	560 (22.0)	640 (25.2)
Term Te	num Long emperature F (50 °C)	Cracked Concrete Characteristic Bond Strength	With Sustained Load or No sustained Load ⁴	$T_{k,cr}$	MPa (psi)	7.5 (1,082)	7.3 (1,060)	7.9 (1,144)	8.2 (1,193)	8.2 (1,188)	8.0 (1,158)	7.9 (1,144)	8.0 (1,163)
Term Te	num Short emperature F 80 °C) ³	Uncracked Concrete Characteristic Bond Strength	With Sustained Load or No sustained Load ⁴	$T_{k,uncr}$	MPa (psi)	15.1 (2,183)	14.6 (2,121)	14.0 (2,025)	14.0 (2,025)	13.5 (1,954)	13.0 (1,886)	12.8 (1,852)	12.5 (1,813)
Term Te	num Long emperature F (72 °C)	Cracked Concrete Characteristic Bond Strength	With Sustained Load or No sustained Load ⁴	$\mathcal{T}_{\mathit{k,cr}}$	MPa (psi)	6.5 (942)	6.4 (922)	6.9 (996)	7.2 (1,038)	7.1 (1,034)	6.9 (1,008)	6.9 (995)	7.0 (1,012)
Term Te	num Short emperature (120°C) ³	Uncracked Concrete Characteristic Bond Strength	With Sustained Load or No sustained Load ⁴	$\mathcal{T}_{k,uncr}$	MPa (psi)	13.1 (1,899)	12.7 (1,845)	12.1 (1,762)	12.1 (1,762)	11.7 (1,700)	11.3 (1,640)	11.1 (1,611)	10.9 (1,577)
		Cracked Concrete	With Sustained Load ⁴	$T_{k,cr}$	MPa (psi)	4.5 (678)	4.6 (665)	4.9 (718)	5.2 (748)	5.1 (745)	5.0 (726)	4.9 (717)	5.0 (729)
Term Te	num Long emperature (100°C)	Characteristic Bond Strength	No Sustained Load	I k,cr	MPa (psi)	5.5 (803)	5.7 (820)	6.0 (874)	6.4 (927)	6.3 (910)	6.2 (892)	6.0 (874)	6.2 (892)
Maxim Term Te	num Short emperature (160 °C) ³	Uncracked Concrete	With Sustained Load ⁴	τ	MPa (psi)	9.4 (1,369)	9.2 (1,329)	8.8 (1,270)	8.8 (1,270)	8.4 (1,225)	8.2 (1,182)	8.0 (1,161)	7.8 (1,136)
		Characteristic Bond Strength	No Sustained Load	$T_{k,uncr}$	MPa (psi)	11.6 (1,676)	11.3 (1,641)	10.8 (1,569)	10.8 (1,569)	10.3 (1,498)	10.1 (1,462)	9.8 (1,427)	9.6 (1,391)
	Re	eduction Factor for Seismic Te	nsion ⁵	$\alpha_{N,seis}$		0.	95			1.0	00		
c on			Dry Concrete	φ _d					0.0	65			
Periodic Inspection	Fa	Strength Reduction actors for Permissible stallation Conditions	Water Saturated Concrete	ϕ_{ws}		0.55							
<u>=</u>		Water-Filled Holes in Concrete	$oldsymbol{\phi}_{wf}$		0.45								

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

Characteristic bond strength values correspond to concrete compressive strength f'_c = 2,500 psi (17.2 MPa). For concrete compressive strength f'_c between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'_c /2,500)^{0.10}. See Section 4.1.4 of ICC-ESR 4535.

2 Lightweight concrete may be used by applying a reduction factor as given in ACI 318-14 17.2.6 or ACI 318-11 Appendix D Section D.3.6 as applicable.

³ Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a results of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

^tCharacteristic bond strength values are for sustained loads (when noted), including dead and live loads.

⁵For structures assigned to Seismic Design Category C, D, E or F, the bond strength values must be multiplied by αN,seis.

Anchoring

TECHNICAL DATA

TABLE 16: ULTRABOND HYB-2CC Development Length for FRACTIONAL REBAR in holes drilled with a HAMMER DRILL and CARBIDE BIT^{1,2,4}

		Criteria Section					Reba	r Size			
Design Information	Symbol	of Reference Standard	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10
	,	ASTM	in.	0.375	0.500	0.625	0.750	0.875	1.000	1.125	1.250
Nominal reinforcing bar diameter	d_b	A615/A706	(mm)	(10)	(13)	(16)	(19)	(22)	(25)	(29)	(32)
Newbookhaa	4	ASTM	in ²	0.11	0.20	0.31	0.44	0.60	0.79	1.00	1.27
Nominal bar area	A_b	A615/A706	(mm²)	(71)	(127)	(198)	(285)	(388)	(507)	(645)	(817)
Development length for f _y = 60 ksi and f' _c = 2,500 psi (normal	I _d	ACI 318-14 25.4.2.3 or	in.	12.0	14.4	18.0	21.6	31.5	36.0	40.5	45.0
weight concrete) ³	¹ d	ACI 318-11 12.2.3	(mm)	(305)	(366)	(457)	(549)	(800)	(914)	(1,029)	(1,143)
Development length for $f_y = 60$,	ACI 318-14 25.4.2.3 or	in.	12.0	12.0	14.2	17.1	24.9	28.5	32.0	35.6
ksi and f' _c = 4,000 psi (normal weight concrete) ³	I _d	ACI 318-11 12.2.3	(mm)	(305)	(305)	(361)	(434)	(633)	(723)	(813)	(904)

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

$$\left(\frac{c_b + K_{tr}}{d_b}\right) = 2.5$$
, Ψ t = 1.0, Ψ e = 1.0, Ψ s = 0.8 for db \leq #6, 1.0 for db $>$ #6

TABLE 17: ULTRABOND HYB-2CC Development Length for **METRIC REBAR** in holes drilled with a **HAMMER DRILL** and **CARBIDE BIT**^{1,2,4}

		Criteria Section of Reference				F	Rebar Size	9		
Design Information	Symbol	of Reference Standard	Units	Ø 8	ø 10	ø 12	ø 16	ø 20	Ø 25	Ø 32
Nominal reinforcing bar diameter	d_{b}	BS 4449: 2005	mm	8	10	12	16	20	25	32
Trommarremmeromy bar diameter	u _D	2000	(in.)	(0.315)	(0.394)	(0.472)	(0.630)	(0.787)	(0.984)	(1.260)
		DO 4440 0005	mm²	50.3	78.5	113.1	210.1	314.2	490.9	804.2
Nominal bar area	A_b	BS 4449: 2005	(in.²)	(0.08)	(0.12)	(0.18)	(0.31)	(0.49)	(0.76)	(1.25)
Development length for $f_y = 72.5$ ksi and $f'_c = 2,500$ psi (normal	I _d	ACI 318-14 25.4.2.3 or	(mm)	305	348	417	556	871	1,087	1,392
weight concrete) ³	-	ACI 318-11 12.2.3	(in.)	(12.0)	(13.7)	(16.4)	(21.9)	(34.3)	(42.8)	(54.8)
Development length for f _y = 72.5 ksi and f' _c = 4,000 psi (normal	I _d	ACI 318-14 25.4.2.3 or	mm	305	305	330	439	688	859	1,100
weight concrete) ³	_	ACI 318-11 12.2.3	(in.)	(12.0)	(12.0)	(13.0)	(17.3)	(27.1)	(33.8)	(43.3)

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

$$\left(\frac{c_b + K_{tr}}{d_b}\right) = 2.5$$
 $\Psi t = 1.0$, $\Psi e = 1.0$, $\Psi s = 0.8$ for db ≤ 20 mm, 1.0 for db > 20 mm

Development lengths valid for static, wind, and earthquake loads (SDC A and B).

²Development lengths in SDC C through F must comply with ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21 and Section 4.2.4 of ICC-ESR 4535.

³fy and f'c used in this table are for example purposes only. For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d) are met to permit I > 0.75.

¹Development lengths valid for static, wind, and earthquake loads (SDC A and B).


²Development lengths in SDC C through F must comply with ACI 318-14 Chapter 18 or ACI 318-11 Chapter 21 and Section 4.2.4 of ICC-ESR 4535.

³fy and f'c used in this table are for example purposes only. For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318-14 25.4.2.4 or ACI 318-11 12.2.4 (d) are met to permit I > 0.75.

ULTRABOND® HYB-2CC Adhesive Anchor Installation Instructions

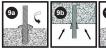
Installation Instructions

Drilling and Cleaning - Hammer Drilled Holes

- Using a rotary hammer drill and standard carbide bit, drill hole to specified diameter and depth required by the anchor rod or rebar. In case of standing water in drilled hole, all water must be removed from hole prior to cleaning.
- Starting at the bottom of the anchor hole, blow out hole 2 cycles (2X) using oil free compressed air (minimum pressure of 87 psi (6 bar)
- 3 Select the correct wire brush for the hole diameter. Brush for 2 cycles (2X) in up/down twisting motion. Repeat step 2, then confirm that hole is clean and free of dust.

Dispensing Preparation - Cartridge Systems

- Check the expiration date on the cartridge to ensure it is not expired. Do not use expired product! Cartridge temperature must be between 41 °F - 104 °F (5 °C - 40 °C) when in use. Remove protective cap. Screw on proper, non-modified ATC mixing nozzle to cartridge. Ensure mixing element is inside the nozzle. Load cartridge into the correct dispensing tool.
- Prior to inserting the anchor rod or rebar into the filled drilled hole, mark the 6. embedment depth position on the anchor. Verify the anchor is straight and free of surface damage.
- Dispense and waste 3 full strokes material to ensure uniform gray color before injecting into hole. Review and note the published working and cure times prior to injection of the mixed adhesive into the clean anchor hole


Installation and Curing

- Fill hole 2/3 full with mixed adhesive starting at the bottom and slowly withdraw as hole fills using an extension tube as needed.
- If extension tube (Part # T16EXTL) is required, first cut the tip of the mixer nozzle
- Use piston plugs for overhead and vertically inclined installations, all installations with drill hole depth > 10" (250 mm), with anchor rod 5/8" to 1-1/4" (M16 to M30) diameter and rebar sizes #5 to #10 (Ø14 to Ø32). Insert piston plug to the back of the drilled hole and inject as described above

- Fully insert clean threaded rod or rebar with slow turning motion to the bottom of the hole. Observe gel (working) time
- Ensure the anchor is fully seated at the bottom of the hole and that some adhesive has flowed from the hole and all around the top of the anchor. If not, the installation must be repeated. For horizontal, inclined or overhead installations, use wedges to support the anchor while curing.
- Do not disturb, torque or apply load until full cure time has passed.

Reference Commentary

Drilling and Cleaning - Hammer Drilled Holes

Read and follow manufacturer's operations manual for the selected rotary drill.

R1. Drill bit should conform to ANSI B212.15. Refer to the installation tables for ULTRABOND HYB-2CC applicable hole diameters and embedment depth ranges. **CAUTION:** Always wear appropriate personal protection

equipment (PPE) for eyes, ears and skin to help avoid inhalation of dust during the drilling and cleaning process. Refer to

the Safety Data Sheet (SDS) for details prior to proceeding.

R2. BLOW (2X) – BRUSH (2X) – BLOW (2X). The compressed air wand should be inserted to the bottom of the hole, have a minimum pressure of 87 psi (6 bar) and be moved in an up/down motion to remove debris.

R3. Refer to the installation tables for ULTRABOND HYB-2CC for wire brush selection. **CAUTION:** The brush should be clean and contact the walls of the hole. If it does not, the brush is either too worn or small and should be replaced with a new brush of the correct diameter. A brush extension must be used for drill hole depth > 6 inches (150 mm). The wire brush

diameter must be checked periodically during use.

R4. After final blow step is completed, visually inspect the hole to confirm it is clean and free of dust, debris, ice, grease, oil or other foreign material. NOTE: If installation will be delayed for any reason, cover cleaned holes to prevent contamination

Dispensing Preparation - Cartridge Systems

R5. Review Safety Data Sheet (SDS) before use. Review working and cure times. Consideration should be given to the reduced gel (working) time of the adhesive in warm temperatures. For permitted range of base matierial see the Cure Schedule. Always use a new mixing nozzle with new cartridges of adhesive and also for all work interruptions exceeding the published gel (working) time of the adhesive. Never re-use nozzles and do not attempt to force adhesive out of a hardened mixing nozzle. Shelf life of ULTRABOND HYB-2CC is 18 months when stored at temperatures between 41 °F (5 °C) and (25 °C). Optional: Before attaching mixing nozzle, balance the cartridge by dispensing a small amount of material until both components are flowing evenly. For a cleaner environment, hand mix the two components and let cure prior to disposal in accordance with local regulations.

R6. Refer to the installation tables for ULTRABOND HYB-2CC applicable embedment depth ranges.

R7. Test bead of mixed adhesive must be uniform in color and free of streaks, as adhesive must be properly mixed in order to perform as published. Dispose of the test bead according to federal, state and local regulations. CAUTION: When changing cartridges, never re-use nozzles and do not attempt to force adhesive out of a hardened mixing nozzle. Leave the mixing nozzle attached to the cartridge upon completion of work.

Installation and Curing

NOTE: Building Code Requirements for Structural Concrete (ACI 318-14 and later) requires the Installer to be certified where adhesive anchors are to be installed in horizontal to vertically inclined (overhead) installations. The engineering drawings must be followed. For all applications not covered by this document, or for all installation questions, please contact Adhesives Technology Corp.

R8a. Be careful not to withdraw the mixing nozzle too quickly as this may trap air in the adhesive. Extension tubing (Part #'s T16EXT or T16EXTL) can be connected as needed onto the outside tip of the mixing nozzle. **NOTE:** When using a pneumatic dispensing tool, ensure that pressure is set at 90 psi (6.2 bar) maximum

R8b. This step is not necessary if using extension tube (Part # T16EXT).

R8c. Refer to the installation tables for ULTRABOND HYB-2CC for piston plug selection. During installation the piston plug will be naturally extruded from the drilled hole by the adhesive pressure. **CAUTION:** In addition to the installer being certified, do not install adhesive anchors overhead or vertically inclined without installation hardware supplied by ATC.

R9a. Prior to inserting the threaded rod or rebar into the hole, make sure it is straight, clean and free of oil/dirt and that the necessary embedment depth is marked on the anchor element. Insert the anchor elements into the hole while turning 1 - 2 rotations prior to the anchor reaching the bottom of the hole. Excess adhesive should be visible on all sides of the fully installed rod or rebar. Reinforcing bars must not be bent after installation except as set forth in ACI 318-14 Section 26.6.3.1 (b) or ACI 318-11 Section 7.3.2, as applicable, with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted. **CAUTION:** Use extra care with deep embedment or high temperature installations to ensure that he working time has not elapsed prior to the anchor being fully installed. Adjustments to the anchor alignment may only performed during the published working time for a given temperature. R9b. For overhead, horizontal and inclined (between horizontal and overhead), wedges should be used to support the anchor while the adhesive is curing. Take appropriate steps to protect the exposed threads of the anchor element from uncured adhesive until after the full cure time has elapsed.

R10. The amount of time needed to reach full cure is base material dependent. Refer to the chart for appropriate full cure time for a given temperature. Refer to the installation tables for ULTRABOND HYB-2CC to ensure proper torque is used. Take care not to exceed the maximum torque for the selected anchor. After full cure time has passed, a fixture can be installed to the anchor and tightened up to the maximum torque.

ULTRABOND® HYB-2CC Adhesive Anchor Installation Instructions

INSTALLATION PARAMETERS FOR FRACTIONAL THREADED ROD AND REBAR

								Fractional Thre	aded Rod (inch)		
	Characteris	atio.	Cumbal	Units	3/8	1/2	5/8	3/4	7/8	1	N/A	1 1/4
	Characteris	suc	Symbol	Units				Fractional	Rebar Size			
					#3	#4	#5	#6	#7	#8	#9	#10
	Nominal Anch	or Diameter	d _a	in.	0.375	0.500	0.625	0.750	0.875	1.000		1.250
8	Drill S	Size	d _o	in.	7/16	9/16	11/16	7/8	1	1 1/8	1	1 3/8
ž	Brush F	Part #			BP716	BP916	BP1116	BP78	BP100	BP118	I	BP138
gec	Piston Plu	g Part #			Not R	equired	PA1116-5PK	PA78-5PK	PA100-5PK	PA118-5PK	N/A	PA138-5PK
rea	Brush Di	ameter		in.	0.528	0.654	0.787	0.976	1.122	1.252	[1.504
두	Maximum	A36/A307	T	Ft-lb	15 ¹	30	44	66	96	147	Ī	221
	Tightening Torque	Carbon Steel	I inst,max	(N-m)	(20)	(41)	(60)	(89)	(130)	(199)		(300)
	Nominal Anch	or Diameter	d _a	in.	0.375	0.500	0.625	0.750	0.875	1.000	1.125	1.250
₽.	Drill S	Size	d _o	in.	1/2	5/8	3/4	7/8	1	1 1/8	1 3/8	1 1/2
6	Brush F	Part #			BP12	BP58	BP34	BP78	BP100	BP118	BP138	BP112
ď	Piston Plu	ig Part#			Not R	equired	PA34-5PK	PA78-5PK	PA100-5PK	PA118-5PK	PA138-5PK	PA112-5PK
	Brush Di	ameter		in.	0.528	0.720	0.846	0.976	1.122	1.252	1.504	1.630

¹for ASTM 36 and F1554 Grade 36, T_{max} = 11 ft.-lb.

INSTALLATION PARAMETERS FOR METRIC THREADED ROD AND REBAR

Charac	torictic	Symbol	Units			Metri	c Threade	d Rod						Metric R	ebar Size			
Cilarac	teristic	Syllibol	Ullits	M10	M12	M16	M20	M24	M27	M30	10	12	14	16	20	25	28	32
Nominal Anch	nor Diameter	d _a	mm	10	12	16	20	24	27	30	10	12	14	16	20	25	28	32
Drill	Size	d _o	mm	12	14	18	22	28	30	35	14	16	18	20	25	32	35	40
Brush	Part #			BP716	BPM14	BP1116	BPM24	BPM28	BP118	BPM35	BPM14	BPM16	BP1116	BPM20	BPM25	BPM32	BPM35	BPM40
Piston Plu	ıg Part#			Not Re	equired	PAM18- 5PK	PA78- 5PK	PA118- 5PK	PAM30- 5PK	PAM138- 5PK	Not Re	equired	PAM18- 5PK	PAM20- 5PK	PAM100- 5PK	PAM32- 5PK	PA138- 5PK	PAM40- 5PK
Brush D	iameter		mm	13.5	15.5	20	24	30	32	37	15.5	17.5	20	22	27	34	37	43.5
Maximum Tightening Torque	A36/A307 Carbon Steel	T _{inst,max}	N-m (Ft-lb)	20 (15)	40 (30)	80 (59)	120 (89)	170 (125)	250 (184)	300 (221)	20 (15)	40 (30)	45 (33)	80 (59)	120 (89)	175 (129)	250 (184)	300 (221)

CONCRETE BREAKOUT DESIGN INFORMATION FOR FRACTIONAL THREADED ROD AND REBAR

					Fractio	onal Threaded	Rod Diamete	r (inch)			
Design Information	Cumbal	Units	3/8	1/2	5/8	3/4	7/8	1	N/A	1 1/4	
Design information	Symbol	Units				Fractional	Rebar Size				
			#3	#4	#5	#6	#7	#8	#9	#10	
Minimum Embedment Depth	h	in.	2 3/8	2 3/4	3 1/8	3 1/2	3 1/2	4	4 1/2	5	
Williman Embeament Depth	n _{ef,min}	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(114)	(127)	
Maximum Embedment Depth	h.	in.	7 1/2	10	12 1/2	15	17 1/2	20	22 1/2	25	
Maximum Embedment Depth	h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635	
Maximum Embedment Depth (PIR)	h.	in.	22 1/2	30	37 1/2	45	52 1/2	60	67 1/2	75	
Maximum Embedment Depth (PIR)	h _{ef,max}	(mm)	(572)	(762)	(953)	(1143)	(1334)	(1524)	(1715)	(1905	
Minimum Spacing Distance	S _{min}	in.	1 7/8	2 1/2	3	3 5/8	4 1/4	4 3/4	5 1/4	5 7/8	
Willindin Spacing Distance	3 min	(mm)	(48)	(64)	(76)	(92)	(108)	(121)	(133)	(149	
Minimum Edge Distance with 100% T _{max}	C min	in.	1 5/8	1 3/4	2	2 3/8	2 1/2	2 3/4	3	3 1/4	
Williman Lage Distance with 100 % 1 max	o _{min}	(mm)	(41)	(44)	(51)	(60)	(64)	(70)	(76)	(83)	
Minimum Edge Distance with 45% T _{max}	C min	in.				1;	3/4		2	3/4	
William Lage Distance With 45 /6 1 max	C min	(mm)			(44) (70)					70)	
Minimum Concrete Thickness h _n		in.	h _{ef} +	+ 1.25	h_{ef} + 2d ₀ where d ₀ is the hold diameter						
Willimum Concrete Thickness	h _{min}	(mm)	(h ef	+ 30)	l	II ef	Zu ₀ writere u _o	is the hold dia	ilicici		

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 006894 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC THREADED ROD AND REBAR
CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC THREADED ROD AND REBAN

Symbol	Unite			Metric	Threade	d Rod						Metric R	ebar Size			
Gyllibol	Ullita	M10	M12	M16	M20	M24	M27	M30	10	12	14	16	20	25	28	32
h _{ef,min}	mm (in.)	60	70	80	90	96 (3.8)	108	120	60	70	75 (3.0)	80 (3.1)	90	100	112	128 (5.0)
h _{ef,max}	mm (in.)	200 (7.9)	240 (9.4)	320 (12.6)	400 (15.7)	480 (18.9)	540 (21.3)	600 (23.6)	200 (7.9)	240 (9.4)	280 (11.0)	320 (12.6)	400 (15.7)	500 (19.7)	560 (22.0)	640 (25.2)
h _{ef,max}	mm (in.)								600 (23.6)	720 (28.3)	840 (33.1)	960 (37.8)	1200 (47.2)	1500 (59.1)	1680 (66.1)	1920 (75.6)
S _{min}	mm (in.)	50 (2.0)	60 (2.4)	80 (3.1)	100 (3.9)	120 (4.7)	135 (5.3)	150 (5.9)	50 (2.0)	60 (2.4)	70 (2.8)	80 (3.1)	100 (3.9)	125 (4.9)	140 (5.5)	160 (6.3)
C min	mm (in.)	45 (1.8)	45 (1.8)	55 (2.2)	60 (2.4)	70 (2.8)	75 (3.0)	80 (3.1)	45 (1.8)	45 (1.8)	50 (2.0)	55 (2.2)	60 (2.4)	70 (2.8)	75 (3.0)	85 (3.3)
C min	mm (in.)					-		70 (2.8)					-			'0 .8)
h _{min}	mm (in.)							meter			h_{ef} + 2d ₀ where d _o is the hold diameter				r	
	h ef.max h ef.max s min c min h min	h ef.min mm (in.) h ef.max mm (in.) h ef.max mm (in.) S min (in.) C min (in.) C min (in.) h mm (in.) mm (in.)	M10	M10 M12 h _{et,min} mm 60 70 (in.) (2.4) (2.8) h _{et,max} mm 200 240 (in.) (7.9) (9.4) h _{et,max} mm s _{min} mm 50 60 (in.) (2.0) (2.4) c _{min} mm 45 45 (in.) (1.8) (1.8) (1.8) c _{min} mm h _{min} mm h _{ef} + 30 (h _{ef} + 1.25)	Name	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Name	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	No. Symbol Units M10 M12 M16 M20 M24 M27 M30 10 12 14 16 20 25 28

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 006894 MPa. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

CURE SCHEDULE1

Base Mater	rial Tempature	Working Time	Full Cure Time
°F	(°C)		
23 to 31	(-5 to -1)	50 min	5 hr
32 to 40	(0 to 4)	25 min	3.5 hr
41 to 49	(5 to 9)	15 min	2 hr
50 to 58	(10 to 14)	10 min	1 hr
59 to 67	(15 to 19)	6 min	40 min
68 to 85	(20 to 29)	3 min	30 min
86 to 104	(30 to 40)	2 min	30 min

Condition (warm) cartridge to 41 °F to 104 °F for installations from 23 °F to 40 °F.

ADHESIVE DISPENSING TOOLS AND MIXING NOZZLES

Accessory	9.5 fl. oz. (280 ml) Cartridge	27.9 fl. oz. (825 ml) Cartridge	
Part #	A10-HYB2CC	A28-HYB2CC	
Manual Dispensing Tool	TM10-HYB	TM28HD	
Pneumatic Dispensing Tool		TA28-HYB	
Recommended Mixing Nozzle	T16-3PK		
Brush Extension	BP-EXT		
Brush Extension with Handle	BP-EXTH		
Nozzle Extension Tubing	T16EXT	T16EXTL	
Retention Wedge	WEDGE		

POST-INSTALLED REBAR hef ≥ 20d

Cartridge Size fl. oz.	Injection Tools	d _s	h _{ef}	Extension Tube
9.5	Manual Tool	≤ #5	≤ 27-1/2 (inch)	
		≤ 16 (mm)	≤ 700 (mm)	1
28	Pneumatic Tool	≤ #5	≤ 39-1/2 (inch)	T16EXT
		≤ 16 (mm)	≤ 1,000 (mm)	I TOEXT
		≤ #8	≤ 27-1/2 (inch)	
		≤ 25 (mm)	≤ 700 (mm)	
		≤ #10	≤ 75 (inch)	T16EXTL
		≤ 32 (mm)	≤ 1,920 (mm)	TIOEXIL

