Anchoring

ULTRABOND ACRYL-SCC

Product Description

ULTRABOND[®] ACRYL-8CC is a two-component (10:1 mix ratio by volume), high strength, styrene-free, vinylester adhesive anchoring system tested for use with threaded rod and reinforcing bar for cracked and uncracked concrete conditions in accordance with ACI 355.4 and ICC-ES AC308. It has an installation temperature range between 14 °F to 104 °F (-10 °C to 40 °C) and an extended in-service temperature range between 14 °F to 248 °F (-10 °C to 120 °C).

General Uses & Applications

- Anchoring threaded rod and reinforcing bar (rebar) into cracked or uncracked concrete using a hammer drill
- Suitable for dry, water saturated, & water-filled conditions using threaded rod or rebar
- Vertical down, horizontal, upwardly inclined and overhead installations

Advantages & Features

- ICC-ES ESR-4249 for use in cracked and uncracked normal weight and lightweight concrete
- Resists static, wind and earthquake loading in tension and shear (IBC Seismic Design Categories A through F)
- Certified Drinking Water System Components (NSF/ANSI 61) Joining and Sealing
- Full cure in 45 minutes at 70 °F (21 °C)
- Resists sustained loads up to 161 °F (72 °C)
- Withstands freeze-thaw conditions

STANDARDS & APPROVALS

<u>CODE COMPLIANT</u>: IBC/IRC 2015, 2012, 2009, 2006 and 2010 FBC ICC-ES (Concrete) ESR-4249

NSF/ANSI 61

ASTM C881-15 & AASHTO M235 Type I, II, IV & V Grade 3 Class A, B & C

Availability: Adhesives Technology Corp. (ATC) products are available online and through select distributors providing all your construction needs. Please contact ATC for a distributor near you or visit <u>www.atcepoxy.com</u> for online purchasing options or to search for a distributor by zip code.

Color & Ratio: Part A (Resin) light beige: Part B (Hardener) Black, Mixed Ratio: 1:1 by volume, Mixed Color - Gray

Storage & Shelf Life: 18 months when stored in unopened containers in dry conditions. Store between 41 $^{\circ}$ F (5 $^{\circ}$ C) and 77 $^{\circ}$ F (25 $^{\circ}$ C).

Installation & Coverage: Manufacturer's Printed Installation Instructions (MPII) are available in this Technical Data Sheet (TDS). Due to occasional updates and revisions, always verify that you are using the most current version of the MPII. In order to achieve maximum results, proper installation is imperative.

Clean-Up: Clean uncured materials from tools and equipment with mild solvents. Cured material can only be removed mechanically.

Limitations & Warnings:

- Do not thin with solvents, as this will prevent cure
- For anchoring applications, concrete should be a minimum of 21 days old prior to anchor installation per ACI 355.4

Safety: Please refer to the Safety Data Sheet (SDS) for ULTRABOND ACRYL-8CC. Call ATC for more information at 1 -800-892-1880.

Specification: Anchoring adhesive shall be a two component, 10:1 ratio by volume, vinylester anchoring system supplied in pre-measured cartridges. Adhesive must meet the requirements of ICC-ES AC308, ACI 355.4 and ASTM C881-15 specification for Type I, II, IV, and V, Grade 3 Class A, B & C. Adhesive must have a heat deflection temperature of 192 °F (89 °C) per ASTM D648 and have a compressive yield strength of 11,430 psi (78.8 MPa) at 75 °F (24 °C) after a 7 day cure per ASTM D695. Adhesive shall be ULTRABOND ACRYL-8CC from Adhesives Technology Corp., Pompano Beach, Florida. Anchors shall be installed per the Manufacturer's Printed Installation Instructions (MPII) for ULTRABOND ACRYL-8CC anchoring system.

Anchoring

ORDERING INFORMATION

TABLE 1: ULTRABOND ACRYL-8CC adhesive, packaging, dispensing tools and accessories¹

Package Size	10 fl. oz. (296 ml) Cartridge	28 fl. oz. (825 ml) Cartridge
Part #	A10-ACRYL8CC	A28-ACRYL8CC
Mixing Nozzle	T10-8CC	T28-8CC
Manual Dispensing Tool	TM10	N/A
Pneumatic Dispensing Tool	N/A	TA28
SDS Brush Adaptor	BA-S	SDS
Brush Extension	BA-I	EXT
Nozzle Extension Tubing	T-8CCE	EXTPK
Retention Wedge	WE	DGE

1. Each cartridge is packaged with one mixing nozzle.

A10-ACRYL8CC

A28-ACRYL8CC

Threaded Rod	Rebar #	Drill Bit Diameter	Maxim		allation T (N-m)	Brush Part #	Piston Plug	
in.		in.	A36// Carboi	A307 n Steel	A193 Carbon F593	Steel or		Part #
3/8	3	7/16	10	(14)	16	(22)	BA716	
1/2		9/16	25	(34)	33	(45)	BA916	
	4	5/8					BA58	
5/8	5	3/4	50	(68)	60	(81)	BA34	PA34
3/4	6	7/8	90	(122)	105	(142)	BA78	PA78
7/8	7	1	12	25	(17	(170) BA100		PA100
1	8	1 1/8	165		(224)		BA118	PA118
1 1/4	9	1 3/8	28	30	(38	380) BA138		PA138
	10	1 1/2					BA112	PA112

TABLE 2: ULTRABOND ACRYL-8CC installation parameters, brushes and piston plugs

Anchoring

MATERIAL SPECIFICATION

TABLE 3: ULTRABOND ACRYL-8CC performance to ASTM C881-15^{1,2,3}

				Sar	nple Conditio	ning Temperat	ure			
Property	Cure	ASTM	Units	Class A	Class B	Optional	Class C			
Froperty	Time	Standard	Units	14 °F (-10 °C)	50 °F (10 °C)	75 °F (24 °C)	104 °F (40 °C)			
Gel Time - 60 Gram Mass ⁴		C881	min	16	8	5	5			
Consistency or Viscosity		C881			Non	-sag				
Compressive Yield Strength			psi	12,820	13,490	11,430	11,830			
	_	D695	(MPa)	(88.4)	(93.0)	(78.8)	(81.6)			
Compressive Modulus			psi	497,300	491,600	374,400	299,100			
	7 day		(MPa)	(3,429)	(3,389)	(2,581)	(2,062)			
Tensile Strength⁵	7 day	D638 -	psi	2,510						
			(MPa)	(17.3)						
Tensile Elongation ⁵		0000	%		.9					
			psi	2,530	2,440	2,320	2,600			
Bond Strength	2 day		(MPa)	(17.4)	(16.8)	(16.0)	(17.9)			
Hardened to Hardened Concrete		0000	psi	1,870	3,020	2,940	3,130			
	4.4	C882	(MPa)	(12.9)	(20.8)	(20.3)	(21.6)			
Bond Strength	14 day		psi		2.5	510				
Fresh to Hardened Concrete			(MPa)		,	7.3)				
		50.00	°F			92				
Heat Deflection Temperature	7 day	D648	(°C)	C) (89)						
Water Absorption	14 day	D570	%	0.74						
Linear Coefficient of Shrinkage	48 hr	D2566	%	% 0.005						

1. Product testing results based on representative lot(s). Average results will vary according to the tolerances of the given property.

2. Full cure time is listed above to obtain the given properties for each product characteristic.

3. Results may vary due to environmental factors such as temperature, moisture and type of substrate.

4. Gel time may be lower than the minimum required for ASTM C881 Type I and IV.

5. Optional testing for Grade 3 systems.

TABLE 4: ULTRABOND ACRYL-8CC CURE

SCHEDULE^{1,2,3,4,5}

Base Material Temperature °F (°C)	Working Time	Full Cure Time
14 (-10)	90 min	24 hr
23 (-5)	90 min	14 hr
32 (0)	45 min	7 hr
41 (5)	25 min	2 hr
50 (10)	15 min	90 min
70 (21)	6 min	45 min
86 (30)	4 min	25 min
95 (35)	2 min	20 min
104 (40)	1.5 min	15 min

For **SI**: °F = °C x 9/5 + 32

1. Working and full cure times are approximate, may be linearly interpolated between listed temperatures and are based on cartridge/nozzle system performance. 2. For installations between 14 °F and 23 °F (-10 °C and -5 °C) the cartridge temperature must be conditioned to between 70 °F and 75 °F (21 °C and 24 °C).

3. Application Temperature: Substrate and ambient air temperature should be from 14 °F and 104 °F (-10 and 40 °C).

4. For installations in wet base materials, the full cure time should be doubled. 5. Storage Temperature is 41 °F to 77 °F (5 °C and 25 °C).

Fast Cure Anchoring Adhesive

Anchoring

INSTALLATION INSTRUCTIONS (MPII)

Drilling and Cleaning

Using a rotary hammer drill, and a bit which conforms to ANSI B212.15 and is the appropriate size for the anchor diameter to be installed, drill the hole to the specified embedment depth. **CAUTION:** Always wear appropriate personal protection equipment (PPE) for eyes, ears & skin and avoid inhalation of dust during the drilling and cleaning process. Refer to the Safety Data Sheet (SDS) for details prior to proceeding.

BLOW (4X) - BRUSH (4X) - BLOW (4X) BLOW - **NOTE:** Remove any standing water from hole prior to beginning the cleaning process. Using oil free compressed air with a minimum pressure of 90 psi (6 bar), insert the air wand to the bottom of the drilled hole and blow out the debris with an up/down motion for a minimum of 4 seconds/cycles (4X). For drilled holes < 7/8 in. diameter, a hand pump (supplied by ATC) may be used instead of compressed air.

BRUSH - Select the correct wire brush size for the drilled hole diameter, making sure that the brush is long enough to reach the bottom of the drilled hole. Reaching the bottom of the hole, using a brush extension if required, brush in an up/down and twisting motion for 4 cycles (4X). **CAUTION:** The brush should be clean and contact the walls of the hole. If it does not, the brush is either too worn or small and should be replaced with a new brush of the correct diameter.

BLOW - Blow the hole out once more to remove brush debris using oil free compressed air with a minimum pressure of 90 psi (6 bar). Insert the air wand to the bottom of the drilled hole and blow out the debris with an up/ down motion for a minimum of 4 seconds/cycles (4X). Visually inspect the hole to confirm it is clean. **NOTE:** If installation will be delayed for any reason, cover cleaned holes to prevent contamination.

Cartridge Preparation

CAUTION: Check the expiration date on the cartridge to ensure it is not expired. **Do not use expired product!** Remove the protective cap from the cartridge and insert the cartridge into the recommended dispensing tool (see Table 1). Screw on the proper ATC mixing nozzle to the cartridge (see Table 1). Do not modify mixing nozzle and confirm that internal mixing element is in place prior to dispensing adhesive. Never use without the mixing nozzle! Take note of the air and base material temperatures, review the working/full cure time chart (see Table 4) and condition the cartridge accordingly prior to starting the injection process.

Dispense three full strokes of material from the mixing nozzle onto a disposable surface until the product is a uniform gray color with no streaks, as adhesive must be properly mixed in order to perform as published. Dispose of the initial amount of adhesive according to federal, state and local regulations prior to injection into the drill hole. **CAUTION**: When changing cartridges, never re-use nozzles. For a new cartridge (or if working time has been exceeded), ensure that cartridge opening is clean, install a new nozzle and repeat steps 5 & 6 accordingly. After finishing work, leave the mixing nozzle attached to the cartridge.

Installation and Curing (Vertical Down, Horizontal & Overhead)

NOTE: The engineering drawings must be followed. For any applications not covered by this document, or for any installation questions, please contact Adhesives Technology Corp. Insert the mixing nozzle, using an extension tube if necessary, to the bottom of the hole and fill from the bottom to the top approximately 2/3 full, being careful not to withdraw the nozzle too quickly as this may trap air in the adhesive. NOTE: Building Code Requirements for Structural Concrete (ACI 318-11) requires the Installer to be certified where adhesive anchors are to be installed in horizontal or overhead installations.

Piston plugs must be used with the extension tube attached to the supplied nozzle for horizontal and overhead installations with anchor sizes 5/8 in. to 1 1/4 in. diameter and rebar sizes of #5 to #10. Select the proper piston plug for the drill hole diameter as given in Table 2.

Prior to inserting the threaded rod or rebar into the hole, make sure it is straight, clean and free of oil and dirt and that the necessary embedment depth is marked on the anchor element. Insert the anchor element into the hole while turning 1-2 rotations prior to the anchor reaching the bottom of the hole. Excess adhesive should be visible on all sides of the fully installed anchor. **CAUTION**: Use extra care with deep embedment or high temperature installations to ensure that the working time has not elapsed prior to the anchor being fully installed.

For overhead installations, horizontal and inclined (between horizontal and overhead), wedges should be used to support the anchor while the adhesive is curing. Take appropriate steps to protect the exposed threads of the anchor element from uncured adhesive until after the full cure time has elapsed.

Do not disturb, torque or apply any load to the installed anchor until the specified full cure time has passed. The amount of time needed to reach full cure is base material temperature dependent - refer to Table 4 for appropriate full cure time. Use caution not to exceed the maximum specified torque once the anchor has fully cured.

Revision 1.0

4

Fast Cure Anchoring Adhesive

Anchoring

TECHNICAL DATA

	5: ULTRABOND ACRYL						hreaded Ro	bd		
L	Design Information	Symbol	Units	3/8"	1/2"	5/8"	3/4"	7/8"	1"	1 1/4"
Nor	ninal Anchor Diameter	d	in. (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.250 (31.8)
Threaded	d Rod Cross-Sectional Area	A _{se}	in. ² (mm ²)	0.078 (50)	0.142 (92)	0.226 (146)	0.335 (216)	0.462 (298)	0.606 (391)	0.969 (625)
	Nominal Strength as Governed by	N _{sa}	lb. (kN)	4,495 (20.0)	8,230 (36.6)	13,110 (58.3)	19,400 (86.3)	26,780 (119.1)	35,130 (156.3)	56,210 (250.0)
ASTM A36 Grade 36 F1554 Grade 36	Steel Strength	V _{sa}	lb. (kN)	2,695 (12.0)	4,940 (22.0)	7,860 (35.0)	11,640 (51.8)	16,070 (71.5)	21,080 (93.8)	33,725 (150.0)
36 Gra	Reduction Factor for Seismic Shear	$\alpha_{V,seis}$		Not Applicable		0.	85		0	.80
STM A F1554	Strength Reduction Factor for Tension ³	φ					0.75			
AS	Strength Reduction actor for Shear ³	φ 0.65								
05	Nominal Strength as Governed by			41,810 (186.0)	57,710 (256.7)	75,710 (336.8)	121,135 (538.8)			
3 B7 rade 1	Steel Strength	V _{sa}	lb. (kN)	4,845 (21.5)	10,640 (47.3)	16,950 (75.4)	25,085 (111.6)	34,625 (154.0)	7) (336.8) (5 5 45,425 72	72,680 (323.3)
M A 19 554 G	Reduction Factor for Seismic Shear	𝒫 _{V,seis}		Not Applicable		0.	85		0	.80
ASTM A193 B7 ASTM F1554 Grade 105	Strength Reduction Factor for Tension ³	φ					0.75			
AS	Strength Reduction Factor for Shear ³	φ					0.65			
Stainless 316	Nominal Strength as Governed by	N _{sa}	lb (kN)	7,750 (34.5)	14,190 (63.1)	22,600 (100.5)	28,430 (126.5)	39,245 (174.6)	51,485 (229.0)	82,370 (366.4)
1 Stair & 316	Steel Strength	V _{sa}	lb (kN)	4,650 (20.7)	8,515 (37.9)	13,560 (60.3)	17,060 (75.9)	23,545 (104.7)	30,890 (137.4)	49,425 (219.9)
33 CW s 304 _c	Reduction Factor for Seismic Shear	$lpha_{V,seis}$		Not Applicable		0.	85		0	.80
ASTM F593 CW1 Types 304 &	Strength Reduction Factor for Tension ²	φ		0.65						
AST	Strength Reduction Factor for Shear ²	φ					0.60			

TABLE 5: ULTRABOND ACRYL-8CC STEEL design information for THREADED ROD¹

For **SI**: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa

For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

1. Values provided for common rod material types are based on specified strength and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers must be appropriate for the rod strength and type.

2. For use with load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D4.4. Values correspond to a brittle steel element.

3. For use with load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D4.4. Values correspond to a ductile steel element.

Fast Cure Anchoring Adhesive

Anchoring

TECHNICAL DATA

TABLE 6: ULTRABOND ACRYL-8CC CONCRETE BREAKOUT design information for THREADED ROD

					Th	readed Rod			
Design Information	Symbol	Units	3/8"	1/2"	5/8"	3/4"	7/8"	1"	1 1/4"
Minimum Embedment Depth	h _{ef,min}	in.	2 3/8	2 3/4	3 1/8	3 1/2	3 1/2	4	5
Minimum Embedment Depth	l ef,min	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(127)
Maximum Embedment Depth	b.	in.	4 1/2	6	7 1/2	9	10 1/2	12	15
	h _{ef,max}	(mm)	(114)	(152)	(191)	(229)	(267)	(305)	(381)
Effectiveness Factor for Cracked Concrete	k _{c,cr}	SI	Not Applicable			17 (7.1			
Effectiveness Factor for Uncracked Concrete	k _{c,uncr}	SI				24 (10)			
Minimum Spacing Distance	S _{min}	in. (mm)			2	$S_{min} = C_{min}$			
Minimum Edge Distance		in.	1 7/8	2 1/2	3 1/8	3 3/4	4 3/8	5	6 1/4
Minimum Edge Distance	C _{min}	(mm)	n) (48) (64) (79) (95) (111)				(127)	(159)	
Minimum Oranata Thistorea	4	in.	h _{ef} + 1.25 ,	[≥ 3.937]	l.				
Minimum Concrete Thickness	h _{min}	(mm)	(h _{ef} + 30 ,	[≥ 100])	n _e	$_{f}$ + 2d ₀ where	e a _o is the h	iole diamete	er
Critical Edge Distance		in.	$C_{ac} = b$	$h_{ef} \cdot \left(\frac{\min(\tau)}{1-\tau}\right)$	$\tau_{k,uncr}; \tau_{k,\max}$ 1160	$\left(\right)^{0.4} \cdot \max \left[\left(\right)^{0.4} \right]^{0.4} $	$3.1 - 0.7 \frac{h}{h_c}$	$\left[\frac{h}{ef}\right];1.4$	
(Uncracked Concrete Only)	C _{ac}	mm	$C_{ac} = b$	$h_{ef} \cdot \left(\frac{\min(\tau)}{1-\tau}\right)$	$\frac{1}{8}$	$\int_{0.4}^{0.4} \cdot \max\left[\left(\right)$	$3.1 - 0.7 \frac{h}{h_{\epsilon}}$	$\left[\frac{n}{e_f}\right];1.4$	
Strength Reduction Factor for Tension, Concrete Failure Mode, Condition B ¹	φ		0.65						
Strength Reduction Factor for Shear, Concrete Failure Mode, Condition B ¹	φ		0.70						

For **SI**: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa

For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

1. Values provided for post-installed anchors with category as determined from ACI 355.4 given for Condition B. Condition B applies without supplementary reinforcement or where pullout (bond) or pryout govern, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, while condition A requires supplemental reinforcement. Values are for use with the load combinations Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 Section 9.2, as applicable, as set forth in ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of *φ* must be determined in accordance with ACI 318-11 D.4.4.

Anchoring

TECHNICAL DATA

ACRYL-8CC

TABLE 7: ULTRABOND ACRYL-8CC BOND STRENGTH design information for THREADED ROD^{1,3,4}

									readed Rod			
	D	esign Infor	nauon	Symbol	Units	3/8"	1/2"	5/8"	3/4"	7/8"	1"	1 1/4"
	Minim	num Embedr	nent Depth	h _{ef,min}	in. (mm)	2 3/8 (60)	2 3/4 (70)	3 1/8 (79)	3 1/2 (89)	3 1/2 (89)	4 (102)	5 (127)
	Maxin	num Embedı	nent Depth	h _{ef,max}	in. (mm)	4 1/2 (114)	6 (152)	7 1/2 (191)	9 (229)	10 1/2 (267)	12 (305)	15 (381)
	_Maximum Long	Cracked	Characteristic Bond Strength with Sustained Load	-	psi (MPa)		498 (3.4)	519 (3.6)	519 (3.6)	519 (3.6)	519 (3.6)	525 (3.6)
	Term Temperature 122 °F (50 °C)	Concrete	Characteristic Bond Strength without Sustained Load	T _{k,cr}	psi (MPa)		712 (4.9)	742 (5.1)	742 (5.1)	742 (5.1)	742 (5.1)	751 (5.2)
ncrete	Maximum Short Term Temperature 176 °F	Uncracked	Characteristic Bond Strength with Sustained Load	π	psi (MPa)	823 (5.7)	823 (5.7)	823 (5.7)	823 (5.7)	823 (5.7)	743 (5.1)	588 (4.1)
ed Col	(80 °C)	Concrete ²	Characteristic Bond Strength without Sustained Load	T _{k,uncr}	psi (MPa)	1,177 (8.1)	1,177 (8.1)	1,177 (8.1)	1,177 (8.1)	1,177 (8.1)	1,062 (7.3)	841 (5.8)
Saturat	Maximum Long	Cracked	Characteristic Bond Strength with Sustained Load	Ŧ	psi (MPa)		245 (1.7)	255 (1.8)	255 (1.8)	255 (1.8)	255 (1.8)	255 (1.8)
Vater S	Term Temperature 161 °F (72 °C)	Characteristic Bond Strength without Sustained Load	T _{k,cr}	psi (MPa)		544 (3.8)	566 (3.9)	566 (3.9)	566 (3.9)	566 (3.9)	566 (3.9)	
/ and /	Maximum Short Term Temperature 248 °F Concercted Concercted				psi (MPa)	405 (2.8)	405 (2.8)	405 (2.8)	405 (2.8)	405 (2.8)	366 (2.5)	
Ď				T _{k,uncr}	psi (MPa)	899 (6.2)	899 (6.2)	899 (6.2)	899 (6.2)	899 (6.2)	813 (5.6)	
	Reduction	Dry Holes in Concrete	$\pmb{\phi}_{d}$					0.65				
	Reduction Factor	rs for Water	Saturated Holes in Concrete	\$ ws					0.55			
	Maximum Long	Cracked	Characteristic Bond Strength with Sustained Load	-	psi (MPa)		388 (2.7)	405 (2.8)	405 (2.8)	363 (2.5)	358 (2.5)	352 (2.4)
	Term Temperature 122 °F (50 °C)	Concrete	Characteristic Bond Strength without Sustained Load	T _{k,cr}	psi (MPa)		555 (3.8)	579 (4.0)	579 (4.0)	520 (3.6)	512 (3.5)	503 (3.5)
ncrete	Maximum Short Term Temperature 176 °F	Uncracked	Characteristic Bond Strength with Sustained Load	π	psi (MPa)	642 (4.4)	642 (4.4)	642 (4.4)	642 (4.4)	576 (4.0)		
s in Co	(80 °C)	Concrete ²	Characteristic Bond Strength without Sustained Load	T _{k,uncr}	psi (MPa)	918 (6.3)	918 (6.3)	918 (6.3)	918 (6.3)	824 (5.7)		
d Hole	Maximum Long Term Temperature	Cracked	Characteristic Bond Strength with Sustained Load	τ	psi (MPa)		191 (1.3)	199 (1.4)	199 (1.4)	179 (1.2)	176 (1.2)	171 (1.2)
ater-Filled Holes in Concrete	161 °F (72 °C)	Concrete	Characteristic Bond Strength without Sustained Load	T _{k,cr}	psi (MPa)		424 (2.9)	442 (3.0)	442 (3.0)	396 (2.7)	391 (2.7)	379 (2.6)
Wate	Term Temperature Uncracked with Sustained Load		Characteristic Bond Strength with Sustained Load	τ	psi (MPa)	316 (2.2)	316 (2.2)	316 (2.2)	316 (2.2)			
	(120 °C) Concrete ² Characteristic Bond Strengtl without Sustained Load			T _{k,uncr}	psi (MPa)	701 (4.8)	701 (4.8)	701 (4.8)	701 (4.8)			
	Reduction Factors for Water-Filled Holes in Concrete			$\phi_{\scriptscriptstyle Wf}$					0.45			
	Reduction Factor for Seismic Tension ⁵								0.95			

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa

For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

1. Characteristic bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa). For uncracked concrete compressive strength f'_c between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of ($f'_c / 2,500$)^{0.13} (for SI: ($f'_c / 17.2$)^{0.13}).

2. Lightweight concrete may be used by applying a reduction factor as given in ACI 318-14 17.2.6 or ACI 318-11 Appendix D section D3.6 as applicable.

3. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a results of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

4. Characteristic bond strength values are for sustained loads (when noted), including dead and live loads.

5. For structures in regions assigned to Seismic Design Category C, D, E, or F the bond strength values must be multiplied by $\alpha_{n,seis}$.

Fast Cure Anchoring Adhesive

Anchoring

TECHNICAL DATA

П	esign Information	Symbol	Units				Reba	r Size					
U	esign mormation	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10		
Nor	ninal Anchor Diameter	d	in.	0.375	0.500	0.625	0.750	0.875	1.000	1.125	1.250		
NUI	linal Anchor Diameter	u	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(28.6)	(31.8)		
	Rebar	A _{se}	in ²	0.110	0.200	0.310	0.440	0.600	0.790	1.000	1.270		
Cı	ross-Sectional Area	∽ _{se}	(mm²)	(71)	(129)	(200)	(284)	(387)	(510)	(645)	(819)		
		N _{sa}	lb.	6,600	12,000	18,600	26,400						
40	Nominal Strength as Governed by	INsa	(kN)	(29.4)	(53.4)								
de 4	Steel Strength	V _{sa}	lb.	3,960	7,200	11,160	15,840						
Grade	5	v _{sa}	(kN)	(17.6)	(32.0)	(49.6)	(70.5)						
A615 (Reduction Factor for Seismic Shear	$\alpha_{V,seis}$		Not Applicable		0.70		Grade 40 reinforcing bars are only available in sizes #3 through #6 per ASTM A615					
ASTM A615	Strength Reduction Factor for Tension ²	φ			0.	65							
	Strength Reduction Factor for Shear ²	φ			0.	60							
		Nsa	lb.	9,900	18,000	27,900	39,600	54,000	71,100	90,000	114,300		
60	Nominal Strength as Governed by	IVsa	(kN)	(44.0)	(80.1)	(124.1)	(176.1)	(240.2)	(316.3)	(400.3)	(508.4)		
le G	Steel Strength	V _{sa}	lb.	5,940	10,800	16,740	23,760	32,400	42,660	54,000	68,580		
Grade	5	v _{sa}	(kN)	(26.4)	(48.0)	(74.5)	(105.7)	(144.1)	(189.8)	(240.2)	(305.1)		
4615 G	Reduction Factor for Seismic Shear	$\alpha_{V,seis}$		Not Applicable 0.70									
ASTM A615	Strength Reduction Factor for Tension ²	φ					0.0	65					
4	Strength Reduction Factor for Shear ²	φ					0.0	60					

TABLE 8: ULTRABOND ACRYL-8CC STEEL design information for REBAR¹

For **SI**: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa

For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

1. Values provided for common rod material types are based on specified strength and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers must be appropriate for the rod strength and type.

2. For use with load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D4.4. Values correspond to a brittle steel element.

Fast Cure Anchoring Adhesive

Anchoring

TECHNICAL DATA

TABLE 9: ULTRABOND ACRYL-8CC CONCRETE BREAKOUT design information for REBAR

Design Information	Symbol	Units				Reba	r Size			
Design Information	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
Minimum Embedment Depth	<i>b</i>	in.	2 3/8	2 3/4	3 1/8	3 1/2	3 1/2	4	4 1/2	5
	h _{ef,min}	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(114)	(127)
Maximum Embedment Depth	h _{ef.max}	in.	4 1/2	6	7 1/2	9	10 1/2	12	13 1/2	15
	Tef,max	(mm)	(114)	(152)	(191)	(229)	(267)	(305)	(343)	(381)
Effectiveness Factor	k _{c.cr}		Not				17			
Cracked Concrete	NC,07	SI	Applicable				(7.1)			
Effectiveness Factor	k _{c,uncr}					2				
Uncracked Concrete	··c,unci	SI				(1	0)			
Minimum Spacing Distance	Smin	in.				$S_{min} =$	Cumin			
	C 11111	(mm)								
Minimum Edge Distance	Cmin	in.	1 7/8	2 1/2	3 1/8	3 3/4	4 3/8	5	5 5/8	6 1/4
5		(mm)						(159)		
Minimum Concrete Thickness	h _{min}	in.	h _{ef} + 1.25 ,			h _{ef} + 2d	where d_o is	s the hole d	iameter	
		(mm)	(h _{ef} + 30 ,	[≥ 100 <u>]</u>)						
Critical Edge Distance	<u> </u>	in.		$C_{ac} = h_e$	$_{f} \cdot \left(\frac{\min\left(\tau_{k}\right)}{1}\right)$	$\tau_{k,\max}$	$\Big)^{0.4} \cdot \max\left[\left(\right)$	$\left(3.1 - 0.7 \frac{h}{h}\right)$	$\left[\frac{h}{ef}\right];1.4$	
(Uncracked Concrete Only)	C _{ac}	mm		$C_{ac} = h_e$	$_{f} \cdot \left(\frac{\min\left(\tau_{k}\right)}{2}\right)$	$(\tau_{k,\max}; \tau_{k,\max})$	$\Big)^{0.4} \cdot \max\left[\left($	$\left(3.1 - 0.7 \frac{h}{h}\right)$	$\left(\frac{h}{ef}\right);1.4$	
Strength Reduction Factor Tension, Concrete Failure Mode,	φ		- 0.65							
Strength Reduction Factor Shear, Concrete Failure Mode,	φ		0.70							

For **SI**: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa

For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

1. Values provided for post-installed anchors with category as determined from ACI 355.4 given for Condition B. Condition B applies without supplementary reinforcement or where pullout (bond) or pryout govern, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, while condition A requires supplemental reinforcement. Values are for use with the load combinations Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 Section 9.2, as applicable, as set forth in ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of *φ* must be determined in accordance with ACI 318-11 D.4.4.

Anchoring

TECHNICAL DATA

ACRYL-8CC

TABLE 10: ULTRABOND ACRYL-8CC BOND STRENGTH design information for REBAR^{1,3,4}

	Design Information								Reba	r Size			
	U	esign Infor	mation	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
	Minim	ium Embedi	ment Depth	h _{ef,min}	in. (mm)	2 3/8 (60)	2 3/4 (70)	3 1/8 (79)	3 1/2 (89)	3 1/2 (89)	4 (102)	4 1/2 (114)	5 (127)
	Maxin	num Embed	ment Depth	h _{ef,max}	in. (mm)	4 1/2 (114)	6 (152)	7 1/2 (191)	9 (229)	10 1/2 (267)	12 (305)	13 1/2 (343)	15 (381)
	Maximum Long Term	Cracked	Characteristic Bond Strength with Sustained Load	-	psi (MPa)		331 (2.3)	345 (2.4)	345 (2.4)	345 (2.4)	345 (2.4)	349 (2.4)	349 (2.4)
	Temperature 122 °F (50 °C)	Concrete	Characteristic Bond Strength without Sustained Load	T _{k,cr}	psi (MPa)		473 (3.3)	493 (3.4)	493 (3.4)	493 (3.4)	493 (3.4)	499 (3.4)	499 (3.4)
crete	Maximum Short Term	Uncracked	Characteristic Bond Strength with Sustained Load	_	psi (MPa)	823 (5.7)	823 (5.7)	823 (5.7)	823 (5.7)	823 (5.7)	743 (5.1)	668 (4.6)	588 (4.1)
d Conc	Temperature 176 °F (80 °C)	Concrete ²	Characteristic Bond Strength without Sustained Load	T _{k,uncr}	psi (MPa)	1,177 (8.1)	1,177 (8.1)	1,177 (8.1)	1,177 (8.1)	1,177 (8.1)	1,062 (7.3)	955 (6.6)	841 (5.8)
aturate	Maximum Long Term	Cracked	Characteristic Bond Strength with Sustained Load	_	psi (MPa)		163 (1.1)	170 (1.2)	170 (1.2)	170 (1.2)	170 (1.2)	172 (1.2)	172 (1.2)
ater Sa	Temperature 161 °F (72 °C)	Characteristic Bond Strength without Sustained Load	T _{k,cr}	psi (MPa)		362 (2.5)	377 (2.6)	377 (2.6)	377 (2.6)	377 (2.6)	382 (2.6)	382 (2.6)	
Dry and Water Saturated Concrete	Maximum Short Term	Characteristic Bond Strength with Sustained Load	_	psi (MPa)	405 (2.8)	405 (2.8)	405 (2.8)	405 (2.8)	405 (2.8)	366 (2.5)	329 (2.3)		
Dry	Temperature 248 °F (120 °C) Uncracked With Sustained Load Concrete ² Characteristic Bond Streng without Sustained Load			T _{k,uncr}	psi (MPa)	899 (6.2)	899 (6.2)	899 (6.2)	899 (6.2)	899 (6.2)	813 (5.6)	730 (5.0)	
	Reduction	Factors for	Dry Holes in Concrete	$\pmb{\phi}_{d}$					0.	65			
	Reduction Factor	s for Water	Saturated Holes in Concrete	ø ws			0.55						
	Maximum Long Term	Cracked	Characteristic Bond Strength with Sustained Load	-	psi (MPa)		258 (1.8)	269 (1.9)	269 (1.9)	242 (1.7)	238 (1.6)	237 (1.6)	234 (1.6)
	Temperature 122 °F (50 °C)	Concrete	Characteristic Bond Strength without Sustained Load	T _{k,cr}	psi (MPa)		369 (2.5)	385 (2.7)	385 (2.7)	346 (2.4)	340 (2.3)	339 (2.3)	335 (2.3)
ete	Maximum Short Term	Uncracked	Characteristic Bond Strength with Sustained Load	τ	psi (MPa)	642 (4.4)	642 (4.4)	642 (4.4)	642 (4.4)	576 (4.0)			
Concr	Temperature 176 °F (80 °C)	Concrete ²	Characteristic Bond Strength without Sustained Load	T _{k,uncr}	psi (MPa)	918 (6.3)	918 (6.3)	918 (6.3)	918 (6.3)	824 (5.7)			
oles in	Maximum Long Term	Cracked	Characteristic Bond Strength with Sustained Load	τ	psi (MPa)		127 (0.9)	133 (0.9)	133 (0.9)	119 (0.8)	117 (0.8)	117 (0.8)	115 (0.8)
illed H	Temperature 161 °F (72 °C) Clacked Concrete Temperature Characteristic Bond Streng without Sustained Load		Characteristic Bond Strength without Sustained Load	T _{k,cr}	psi (MPa)		282 (1.9)	295 (2.0)	295 (2.0)	264 (1.8)	260 (1.8)	260 (1.8)	255 (1.8)
Water-Filled Holes in Concrete	Maximum Short Term Temperature Temperature		T _{k,uncr}	psi (MPa)	316 (2.2)	316 (2.2)	316 (2.2)	316 (2.2)					
>	Concrete ² Characteristic Bond Strength (120 °C)				psi (MPa)	702 (4.8)	702 (4.8)	702 (4.8)	702 (4.8)				
	Reduction Factors for Water-Filled Holes in Concrete			$\pmb{\phi}_{wf}$		0.45							
	Reduction Factor for Seismic Tension ⁵			α _{N,seis}		- 1.00							

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa

For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

1. Characteristic bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa). For uncracked concrete compressive strength f_c between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of ($f_c / 2,500$)^{0.13} (for SI: ($f_c / 17.2$)^{0.13}).

2. Lightweight concrete may be used by applying a reduction factor as given in ACI 318-14 17.2.6 or ACI 318-11 Appendix D section D3.6 as applicable.

3. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a results of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

4. Characteristic bond strength values are for sustained loads (when noted), including dead and live loads.

5. For structures in regions assigned to Seismic Design Category C, D, E, or F the bond strength values must be multiplied by $\alpha_{n,seis}$.

Anchoring

TECHNICAL DATA

TABLE 11: ULTRABOND ACRYL-8CC allowable TENSION loads for THREADED ROD in normal-weight concrete¹

Threaded Rod	Nominal Drill Bit	Embed		Bond Strength / 0	on Load Based on Concrete Capacity ^{2,3} . (kN)	Allow			on Load B trength⁴	ased on	
Diameter in.	Diameter in.	Dep in. (n		f' _c ≥ 2,500 p	osi (17.4 MPa)	Grad	F1554 de 36 (kN)	ASTM Grad Ibs.		ASTM F593 304/316 SS Ibs. (kN)	
		2 3/8	(60)	1,011	(4.5)						
3/8	7/16	3 3/8	(86)	1,437	(6.4)	2,114	(9.4)	4,556	(20.3)	3,645	(16.2)
		4 1/2	(114)	1,916	(8.5)						
		2 3/4	(70)	1,561	(6.9)						
1/2	9/16	4 1/2	(114)	2,555	(11.4)	3,758	(16.7)	8,099	(36.0)	6,480	(28.8)
		6	(152)	3,407	(15.2)						
		3 1/8	(79)	2,218	(9.9)						
5/8	3/4	5 5/8	(143)	3,992	(17.8)	5,872	(26.1)	12,655	(56.3)	10,124	(45.0)
		7 1/2	(191)	5,323	(23.7)						
		3 1/2	(86)	2,981	(13.7)						
3/4	7/8	6 3/4	(171)	5,749	(25.6)	8,456	(37.6)	18,224	(81.1)	12,392	(55.1)
		9	(229)	7,665	(34.1)						
		3 1/2	(89)	3,451	(15.4)						
7/8	1	7 7/8	(200)	7,825	(34.8)	11,509	(51.2)	24,804	(110.3)	16,867	(75.0)
		10 1/2	(267)	10,433	(46.4)						
		4	(102)	4,101	(18.2)						
1	1 1/8	9	(229)	9,226	(41.0)	15,033	(66.9)	32,398	(144.1)	22,030	(98.0)
		12	(305)	12,302	(54.7)						
		5	(127)	5,071	(22.6)						
1 1/4	1 3/8	11 1/4	(286)	11,409	(50.7)	23,488	(104.5)	50,621	(225.2)	34,423	(153.1)
		15	(381)	15,212	(67.7)						

For SI: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

1. The lower value of either the allowable bond strength/concrete capacity or steel strength should be used as the allowable tension value for design.

2. Allowable tension loads calculated based on strength design provisions of IBC Section 1605.3 with the following assumptions: Temperature range A: Maximum short term temperature of 176 °F (80 °C), Maximum long term temperature of 122 °F (50°C). Load combination from ACI based on 1.2D + 1.6L assuming dead load of 0.3 and live load of 0.7 giving a weighted average of 1.48. $f_c = 2,500$ psi normal-weight uncracked concrete. Single anchor, vertically down with periodic special inspection and no seismic loading. ϕ_d 0.65 for dry concrete, $C_{a1} = C_{a2} \ge C_{ac}$, $h \ge h_{min}$ 3. For long term temperature exposure greater than 122 °F (50 °C) and up to 161 °F (72°C), with short term temperatures up to 248 °F (120 °C), apply a reduction

factor of 0.49 to the allowable tension load.

4. Allowable steel strengths calculated in accordance with AISC Manual of Steel Construction: Tensile = 0.33 * Fu * Anom.

Fast Cure Anchoring Adhesive

Anchoring

TECHNICAL DATA

TABLE 12: ULTRABOND ACRYL-8CC allowable SHEAR loads for THREADED ROD in normal-weight concrete¹

Threaded Rod	Nominal Drill Bit	Embed		Bond Strength / C	ar Load Based on Concrete Capacity ^{2,3} . (kN)		Allowable Shear Load Based on Steel Strength ⁴							
Diameter in.	Diameter in.	Dep in. (n		f' _c ≥ 2,500 p	osi (17.4 MPa)	ASTM Grad Ibs.	le 36	ASTM A193 Grade B7 Ibs. (kN)		ASTM F593 304/316 SS Ibs. (kN)				
		2 3/8	(60)	1,011	(4.5)									
3/8	7/16	3 3/8	(86)	2,436	(10.8)	1,089	(4.8)	2,347	(10.4)	1,878	(8.4)			
		4 1/2	(114)	3,832	(17.0)									
		2 3/4	(70)	1,878	(8.4)									
1/2	9/16	4 1/2	(114)	4,308	(19.2)	1,936	(8.6)	4,172	(18.6)	3,338	(14.8)			
		6	(152)	6,813	(30.3)									
		3 1/8	(79)	2,496	(11.1)									
5/8	3/4	5 5/8	(143)	6,725	(29.9)	3,025	(13.5)	6,519	(29.0)	5,216	(23.2)			
		7 1/2	(191)	10,646	(47.4)									
		3 1/2	(86)	3,196	(14.2)									
3/4	7/8	6 3/4	(171)	9,259	(41.2)	4,356	(19.4)	9,388	(41.8)	6,384	(28.4)			
		9	(229)	14,168	(63.0)									
		3 1/2	(89)	3,332	(14.8)									
7/8	1	7 7/8	(200)	11,663	(51.9)	5,929	(26.4)	12,778	(56.8)	8,689	(38.7)			
		10 1/2	(267)	17,846	(79.4)									
		4	(102)	4,084	(18.2)									
1	1 1/8	9	(229)	13,674	(60.8)	7,744	(34.4)	16,690	(74.2)	11,349	(50.5)			
		12	(305)	20,923	(93.1)									
		5	(127)	5,200	(23.1)									
1 1/4	1 3/8	11 1/4	(286)	17,394	(77.4)	12,100	(53.8)	26,078	(116.0)	17,733	(78.9)			
		15	(381)	26,615	(118.4)									

For SI: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

1. The lower value of either the allowable bond strength/concrete capacity or steel strength should be used as the allowable tension value for design.

2. Allowable tension loads calculated based on strength design provisions of IBC Section 1605.3 with the following assumptions: Temperature range A: Maximum short term temperature of 176 °F (80 °C), Maximum long term temperature of 122 °F (50°C). Load combination from ACI based on 1.2D + 1.6L assuming dead load of 0.3 and live load of 0.7 giving a weighted average of 1.48. $f_c = 2,500$ psi normal-weight uncracked concrete. Single anchor, vertically down with periodic special inspection and no seismic loading. $\phi_d 0.65$ for dry concrete, $C_{a1} = C_{a2} \ge C_{ac}$, $h \ge h_{min}$ 3. For long term temperature exposure greater than 122 °F (50 °C) and up to 161 °F (72°C), with short term temperatures up to 248 °F (120 °C), apply a reduction

factor of 0.49 to the allowable shear load.

4. Allowable steel strengths calculated in accordance with AISC Manual of Steel Construction: Shear = 0.17 * F_u * A_{nom}.

Anchoring

TECHNICAL DATA

Rebar Size	Nominal Drill Bit Diameter in. 1/2	Embedment Depth in. (mm)		Allowable Tension Load Based on Bond Strength / Concrete Capacity ^{2,3} Ibs. (kN) f' _c ≥ 2,500 psi (17.4 MPa)		Allowable Tension Load Based on Steel Strength ⁴			
						ASTM A615 Grade 60 Ibs. (kN)		ASTM A615 Grade 40 Ibs. (kN)	
		2 3/8	(60)	1,497	(6.7)				
		3 3/8	(86)	2,127	(9.5)	2,640	(11.7)	1,760	(7.8)
		4 1/2	(114)	2,836	(12.6)				
#4	5/8	2 3/4	(70)	2,311	(10.3)	4,800	(21.4)	3,200	(14.2)
		4 1/2	(114)	3,781	(16.8)				
		6	(152)	5,042	(22.4)				
#5	3/4	3 1/8	(79)	3,282	(14.6)	7,440	(33.1)	4,960	(22.1)
		5 5/8	(143)	5,908	(26.3)				
		7 1/2	(191)	7,878	(35.0)				
#6	7/8	3 1/2	(86)	4,412	(13.7)	10,560	(47.0)	7,040	(31.3)
		6 3/4	(171)	8,508	(37.8)				
		9	(229)	11,344	(50.5)				
#7	1 1/8	3 1/2	(89)	5,107	(22.7)	14,400	(64.1)		
		7 7/8	(200)	11,580	(51.5)				
		10 1/2	(267)	15,440	(68.7)				
#8		4	(102)	6,069	(27.0)	18,960			
	1 1/4	9	(229)	13,655	(60.7)		(84.3)	Grade 40 reinforcing bars are only available in sizes #3 through #6 per ASTM A615	
		12	(305)	18,207	(81.0)				
#9		4 1/2	(114)	6,906	(30.7)	24,000	(106.8)		
	1 3/8	10 1/8	(257)	15,538	(69.1)				
		13 1/2	(343)	20,717	(92.2)				
#10	1 1/2	5	(127)	7,504	(33.4)	30,480	(135.6)		
		11 1/4	(286)	16,885	(75.1)				
		15	(381)	22,513	(100.1)				

TABLE 13: ULTRABOND ACRYL-8CC allowable TENSION loads for REBAR in normal-weight concrete¹

For SI: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

 The lower value of either the allowable bond strength/concrete capacity or steel strength should be used as the allowable tension value for design.
 Allowable tension loads calculated based on strength design provisions of IBC Section 1605.3 with the following assumptions: Temperature range A: Maximum short term temperature of 176 °F (80 °C), Maximum long term temperature of 122 °F (50°C). Load combination from ACI based on 1.2D + 1.6L assuming dead load of 0.3 and live load of 0.7 giving a weighted average of 1.48. fc = 2,500 psi normal-weight uncracked concrete. Single anchor, vertically down with periodic special inspection and no seismic loading. ϕ_d 0.65 for dry concrete, $C_{a1} = C_{a2} \ge C_{ac}$, $h \ge h_{min}$ 3. For long term temperature exposure greater than 122 °F (50 °C) and up to 161 °F (72°C), with short term temperatures up to 248 °F (120 °C), apply a reduction

factor of 0.49 to the allowable tension load.

4. Allowable steel strengths calculated in accordance with AISC Manual of Steel Construction: Tensile = 0.33 * F_u * A_{nom}.

Fast Cure Anchoring Adhesive

Anchoring

TECHNICAL DATA

Rebar Size	Nominal Drill Bit	Embedment Depth in. (mm)		Allowable Shear Load Based on Bond Strength / Concrete Capacity ^{2,3} Ibs. (kN) f' _c ≥ 2,500 psi (17.4 MPa)		Allowable Shear Load Based on Steel Strength ⁴			
	Diameter in.					ASTM A615 Grade 60 Ibs. (kN)		ASTM A615 Grade 40 Ibs. (kN)	
#3		2 3/8	(60)	1,497	(6.7)	1,683	(7.5)		(5.0)
	1/2	3 3/8	(86)	3,605	(16.0)			1,122	
		4 1/2	(114)	5,672	(25.2)				
#4		2 3/4	(70)	2,780	(12.4)	3,060	(13.6)	2,040	(9.1)
	5/8	4 1/2	(114)	6,376	(28.4)				
		6	(152)	10,084	(44.9)				
#5		3 1/8	(79)	3,694	(16.4)	4,743	(21.1)	3,162	(14.1)
	3/4	5 5/8	(143)	9,953	(44.3)				
		7 1/2	(191)	15,756	(70.1)				
#6	7/8	3 1/2	(86)	4,730	(13.7)	6,732	(29.9)	4,488	(20.0)
		6 3/4	(171)	13,704	(61.0)				
		9	(229)	20,969	(93.3)				
#7	1 1/8	3 1/2	(89)	4,932	(21.9)	9,180	(40.8)		
		7 7/8	(200)	17,261	(76.8)				
		10 1/2	(267)	26,412	(117.5)				
#8	1 1/4	4	(102)	6,045	(26.9)	12,087	(53.8)	Grade 40 reinforcing bars are only available in sizes #3 through #6 per ASTM A615	
		9	(229)	20,237	(90.0)				
		12	(305)	30,966	(137.7)				
#9	1 3/8	4 1/2	(114)	6,900	(30.7)	15,300	(68.1)		
		10 1/8	(257)	23,182	(103.1)				
		13 1/2	(343)	35,472	(157.8)				
		5	(127)	7,683	(34.2)	19,431	(86.4)		
#10	1 1/2	11 1/4	(286)	25,791	(114.7)				
		15	(381)	39,464	(175.5)				

TABLE 14: ULTRABOND ACRYL-8CC allowable SHEAR loads for REBAR in normal-weight concrete¹

For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi

1. The lower value of either the allowable bond strength/concrete capacity or steel strength should be used as the allowable tension value for design.

2. Allowable tension loads calculated based on strength design provisions of IBC Section 1605.3 with the following assumptions: Temperature range A: Maximum short term temperature of 176 °F (80 °C), Maximum long term temperature of 122 °F (50 °C). Load combination from ACI based on 1.2D + 1.6L assuming dead load of 0.3 and live load of 0.7 giving a weighted average of 1.48. $f_c = 2,500$ psi normal-weight uncracked concrete. Single anchor, vertically down with periodic special inspection and no seismic loading. ϕ_d 0.65 for dry concrete, $C_{a1} = C_{a2} \ge C_{ac}$, $h \ge h_{min}$ 3. For long term temperature exposure greater than 122 °F (50 °C) and up to 161 °F (72°C), with short term temperatures up to 248 °F (120 °C), apply a reduction factor of 0.49 to the allowable shear load.

4. Allowable steel strengths calculated in accordance with AISC Manual of Steel Construction: Shear = 0.17 * Fu * Anom.